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Abstract—App developers publish apps on different platforms,
such as Google Play, App Store, and Windows Store, to maximize
the user volumes and potential revenues. Due to the different
characteristics of the platforms and the different user preference
(e.g., Android is more customized than iOS), app testing cases on
these three platforms should also be designed differently. Com-
prehensive app testing can be time-consuming for developers.
Therefore, understanding the differences of the app issues on
these platforms can facilitate the testing process.

In this paper, we propose a novel framework named
CrossMiner to analyze the essential app issues and explore
whether the app issues exhibit differently on the three platforms.
Based on five million user reviews, the framework automatically
captures the distributions of seven app issues, i.e., “battery”,
“crash”, “memory”, “network”, “privacy”, “spam”, and “UI”.
We discover that the apps for different platforms indeed gen-
erate different issue distributions, which can be employed by
app developers to schedule and design the testing cases. The
verification based on the official user forums also demonstrates
the effectiveness of our framework. Furthermore, we also identify
that the issues related to “crash” and “network” are more
concerned by users than the other issues on these three platforms.
To assist developers in gaining a deep insight on the user issues,
we also prioritize the user reviews corresponding to the issues.
Overall, we aim at understanding the differences of issues on
different platforms and facilitating the testing process for app
developers.

I. INTRODUCTION

Smartphones have penetrated into people’s daily life. By

2015, the global user volume of smartphones has exceeded half

the world’s population [10]. Accounting for this popularity is

the growing creation and usage of mobile applications (i.e.,
apps). To distribute the apps to users, developers are required

to publish the apps on the distribution platforms specific for

mobile apps. Generally, app developers choose to deliver their

apps on more than one platform to enlarge the potential user

volume and revenue [15]. Currently, the three largest global

platforms for app distribution are Google Play, App Store, and

Windows Store, which occupy 82.8%, 13.9%, and 2.6% of the

market, respectively [13]. These three platforms are also the

focus of our study.

To ensure the user experience, developers should examine

the software reliability before the app delivery. The unique

characteristics of the operating systems indicate that the testing

on these platforms are not exactly the same [11], shown in

Fig. 1. For example, Android is more customizable and offers

an open platform, while iOS prioritizes the user interface

over just about anything [8]. Furthermore, the users of dif-

ferent platforms possess different preferences. For example,

iOS users are considered to be more “addicted” to digital

devices than Android users [18]. Therefore, different platforms

may generate different app issues, and understanding the

differences facilitates the app development process for the

developers.

Fig. 1: User Experience on Different Platforms. Here, “UXF”

denotes the user experience friction - the aspects of a device

that can annoy users in a niggling way.

The existing studies concentrate on comparing the char-

acteristics of the operating systems, such as the accessing

Internet streaming services [32], security mechanisms [19],

and the demographics [20]. There is no exploration of the

differences of app issues on these platforms. Although one

piece of work [37] analyzes bugs and bug-fixing for projects on

different platforms, the work focuses on the updating rates and

bug details. In this paper, we aim at comparing the app issues

for the platforms and provide the developers with insights on
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testing apps.

Since user reviews provide a valuable data source for de-

velopers to identify potential issues of their mobile apps [23],

we employ user reviews to discover the app issues. We have

crawled about five million user reviews of 20 apps for the three

platforms (i.e., Google play, App Store, and Windows Store).

By examining the app reviews, we have chosen seven issues

for comparison. They are “crash”, “battery drainage”, “mem-

ory consumption”, “network connection”, “privacy”, “spam”,

and “UI design”. We have designed a novel framework named

CrossMiner to comprehend these issues distributions on these

platforms, and provide developers with crucial issues for

different platforms.

To analyze the differences of app issues on different plat-

forms, we first preprocess raw reviews to obtain input for

word2vec [16] model and convert each word into a vector.

Then, we cluster the words by k-means algorithm and sum-

marize the corresponding keywords for each issue based on

cosine similarity method. By employing the keyword-based

method, we compute and visualize the distribution of each

issue in different platforms. For better understanding specific

issues, we also prioritize important reviews accordingly for

the developers. We have conducted an empirical study on a

large scale dataset (4,663,316 reviews of 20 popular apps), and

demonstrate the differences and similarities existing along with

the three platforms. We also verify that CrossMiner can reflect

the importance of the user concerns accurately ultimately.

In this paper, we intend to answer the following three

questions:

1) Are there any differences and similarities of different

platforms regarding the issue distributions? (Section V-D)

2) Can CrossMiner embody the user concerns accurately?

(Section V-E)

3) Can CrossMiner reflect platform-level issues? (Section V-F)

Generally, CrossMiner captures the representative keywords

corresponding to one specific issue from massive user reviews,

and aims at discovering the differences of user perceptions

on different platforms. The contributions are summarized as

following:

• We first propose a framework CrossMiner to extract issue-

related keywords comprehensively from real user reviews,

which can be facilitated for other research applications.

• We discover the differences and similarities on different

platforms from users’ perspective, especially from user

reviews.

• We demonstrate that our framework reflects the impor-

tance of user concerns accurately. The developers can also

analyze the detailed concerns based on the prioritized user

reviews.

The remainder of this paper is organized as follows. Sec-

tion II discusses the motivation of our exploration on user

issues in different app stores. Section III illustrates the overall

framework of CrossMiner. Section IV explains the issue-

prioritizing model of our study. Section V presents the ex-

perimental results of 20 popular apps and demonstrates the

effectiveness of our method based on official user forums.

Section VI discusses some possible limitations and threats

to validate. Section VII presents the related studies. Finally,

Section VIII concludes the paper.

II. MOTIVATION AND BACKGROUND

A report from [10] represents the quantity of apps available

for downloading in leading app stores during July 2015. There

are more than 1.6 million, 1.5 million, and 0.34 million in

Google Play, App Store, and Windows Store, respectively.

As a process for improving app’s functionality, usability, and

consistency, mobile app testing determines the delivery quality

to end users, and becomes increasingly important for any

companies that desire to keep competitive in the intensive app

markets.

However, designing comprehensive app testing cases is

time-consuming and sometimes difficult for app developers.

One key challenge for the app testing is attributed to the

diverse mobile platforms, such as Android, iOS, and Windows

Phone. Each mobile operating system possesses unique limi-

tations and properties. App testing across different platforms

requires app developers to be familiar with the characteristics

of each platform, and design test cases specifically. Moreover,

users of different platforms embody different preferences and

perceptions about an app [11]. Therefore, comprehending the

user issues on different platforms can facilitate the whole

process for app developers.

User reviews can be regarded as the “voices of users”.

They directly reflect the user experience [34]. Since analyzing

user reviews assists developers in fixing bugs and adding new

features [23], different user concerns on different platforms

can be captured by utilizing the corresponding app reviews.

Thus, developers can test apps more specifically and efficiently

based on the extracted user issues.

In this paper, we select seven issues which are crucial for

app testing [7], [17]. They are “battery”, “crash”, “memory”,

“network”, “privacy”, “spam”, and “UI”. To verify whether

users concern these issues practically, we take Facebook as an

example and examine the corresponding user reviews. Table I

illustrates the user reviews regarding these issues.

In this paper, we aim at implementing a framework, namely

CrossMiner, to help developers understand the differences

of app issues on different platforms based on user reviews.

Developers can then focus on the important issues on these

platforms during the app testing. Given the app reviews of each

platform, CrossMiner automatically prioritizes the issues on

this platform. We focus on the seven issues shown in Table I.

III. FRAMEWORK

Fig. 2 illustrates the overview of the proposed framework

CrossMiner, which consists of three steps. The first step

preprocesses and filters raw user reviews from the three app

stores, including Google Play, App Store, and Windows Store

(Section IV-A). In this process, raw user reviews are converted

into clean user reviews to facilitate the following steps. The

second step trains a model for our dataset. This model can ex-

tract the keywords automatically for the seven issues illustrated
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TABLE I: User Review Related to Each Issue for Facebook

Issue Platform Review Rating Date

Battery

Google Play This app is the main reason to drain down the battery! 1.0 Feb 07, 2016

App Store Nice but make wasteful battery, first fix dong. 4.0 Mar 05, 2016

Windows Store Battery draining app. 1.0 Mar 11, 2016

Crash

Google Play The app crash as soon as i tap on the facebook icon. 1.0 Feb 08, 2016

App Store Crash and hang issue in ios.... Pls fix. 1.0 Mar 08, 2016

Windows Store Turrible, it crashes every 4 minutes and its just. 1.0 Mar 04, 2016

Memory

Google Play The app is good but it takes too much memory space. 4.0 Jan 18, 2016

App Store Since the last update covers much memory space. 3.0 Mar 05, 2016

Windows Store This it takes whole space in my memory card. 1.0 Aug 08, 2015

Network

Google Play It always gives me a network problem. 1.0 Feb 06, 2016

App Store Network connection error. 1.0 Nov 21, 2015

Windows Store Waiting for network for days, slowest app ever. 2.0 Sep 23, 2015

Privacy

Google Play The Big Brother version. No privacy anymore. 1.0 Feb 07, 2016

App Store Poor. Privacy invading. 1.0 Jan 27, 2016

Windows Store It got privacy problems. 1.0 Mar 07, 2016

Spam

Google Play Uses too many resources, and includes a lot of spam. 2.0 Aug 05, 2015

App Store All this spam and posts I didn’t make are annoying. 2.0 Aug 31, 2015

Windows Store This app puts spam ads for weight loss on the news feed. 1.0 Feb 19, 2015

UI

Google Play Change ui of app. its boring to use same ui app. 2.0 Sep 11, 2015

App Store This app can be so much better...yet the UI just drives me nuts. 1.0 Feb 05, 2016

Windows Store We need the call feature and little tweak in the UI. 1.0 Feb 22, 2016

in Table I (Section IV-B). Based on the extracted keywords,

we prioritize these issues for each platform, and compare these

issues distributions among the three platforms. To gain an in-

depth understanding of specific issues, we also recommend

essential user reviews corresponding to these issues. Finally,

we visualize the experimental findings for app developers

(Section V).

Fig. 2: Overview of the Framework CrossMiner

IV. IMPLEMENTATION

In this section, we present the details of our framework

CrossMiner, including clean review extraction, and keywords

generation. The visualization component will be discussed

during the experimental study (Section V).

A. Clean Review Extraction

To our knowledge, app reviews are short in length, and

contain massive misspelled words and made-up words [21].

In the first step, CrossMiner obtains clean reviews to facilitate

the model training in the subsequent process. The step mainly

contains two parts, i.e., preprocessing and filtering.
1) Preprocessing: To facilitate the subsequent analysis,

we first remove the non-English characters existing in the

raw reviews and convert raw reviews into lowercases. Then

we remove all the non-alpha-numeric symbols but keep the

punctuations to ensure the semantic integrity [3]. Finally, we

tokenize the reviews to word-level collections. To better reduce

the inflectional forms to the common base forms, we propose

a novel lemmatization method. We do not utilize stemming,

since it usually refers to a crude heuristic process that chops

off the ends of words, illustrated in Table II. Some words are

difficult to identify after stemming (e.g., “minutes” to “minut”,

and “adding” to “ad”).

TABLE II: Results of Stemming and Lemmatization

Original Word Stemming Lemmatization(v) Lemmatization(n)
are be be are

adding ad add adding
several sever several several
settings set settings setting

developers develop developers developer
minutes minut minutes minute
serves serv serve serf
does doe do doe
uses use use us
pass pass pass pas
less less less le

Furthermore, considering the influence of the part of speech,

we combine the lemmatization for verbs, denoted as Lemma-

tization(v), and the lemmatization for nouns, denoted as
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Lemmatization(n). Lemmatization(n) can not convert verbs

into the base forms. Moreover, some words are converted into

other words that are totally irrelevant with original words,

such as “serves” to “serf”, “does” to “doe”, “uses” to “us”,

which can be compensated by Lemmatization(v). However,

Lemmatization(v) can not achieve the desired result either. For

example, “settings” and “developers” keep unchanged after

the lemmatization(v), while Lemmatization(n) can return the

correct forms. Therefore, neither lemmatizations can achieve

ideal results solely.
The combinations of Lemmatization(v) with Lemmatiza-

tion(n) are implemented as following. We first lemmatize all

words by Lemmatization(v). We then conduct the Lemmatiza-

tion(n) for words without “ss” ends, since Lemmatization(n)

converts the words ending with ’ss’ into other words instead

of their base forms (e.g., “pass” to “pas”, and “less” to

“le”, illustrated in Table II). Table III presents the results

of our proposed lemmatization method, which demonstrates

its effectiveness. The Lemmatizer employed is implemented

based on the Natural Language Toolkit (NLTK) [9].

TABLE III: Results of Proposed Lemmatization

Original Word Proposed Lemmatization
adding add
several several
settings setting

developers developer
minutes minute
serves serve
does do
uses use
pass pass
less less

2) Filtering: The previous step generates a preprocessed

review collection, with examples presented in Table IV. We

then classify each review into three types, i.e., “useless”, “non-

informative”, and “informative”. The “useless” reviews are

those reviews with too much made-up or misspelled words.

Some users type letters just arbitrarily during the review writ-

ing, which cannot provide any suggestions to developers. The

“non-informative” reviews contain no information beneficial

for the app development (e.g., “nice app.”, and “pls fix it!”).

We retain the “non-informative” reviews since they possess

intact sentence structures, which can serve as the input of

the model training. All the other reviews are determined as

“informative” reviews, which offer developers suggestions on

fixing bugs or adding features. In the end, only the “useless”

reviews are filtered out for the subsequent process.
Subsequently, to filter noises in the reviews, we conduct

a rule-based method in the word-level granularity and spell

checking at the review-level granularity.
a) Word-Level: Three rules are adopted during the word-

level filtering process, illustrated in the following.
Rule 1 (Consecutive Duplicate Letter Limit). We remove

consecutive duplicates, since the length of consecutive re-
peated letters is less than three generally [4]. Specifically, if
the repetition times of a letter is more than two, the repeated
ones will be eliminated (e.g., “suuuuper” to “super”).

Rule 2 (Word Length Limit). We remove all the words
whose length is more than 15, since 99.93% English words’
lengths are less than 16 [6] (e.g., “jfieendkwjjfkkdn”).

Rule 3 (Consecutive Duplicate Word Limit). We remove
consecutive duplicate words in a sentence (e.g., “very very
very beautiful” to “very beautiful”).

b) Review-Level: In review level, we employ Enchant [5],

a generic spell checking library, to conduct the spell checking

in each review. Any reviews with more than half words not

correctly spelled will be removed.
After preprocessing and filtering, we convert all raw reviews

into clean reviews. Table IV presents the results after prepro-

cessing and filtering.

TABLE IV: Results of Preprocessing and Filtering

Type Preprocessed Review Clean Review

Useless
gk bgitu jlek anyway. tp
gmna lg mw. hrus ttap
there perubhan.

Non-informative nice app. nice app.

Non-informative pls fix it! pls fix it!

Non-informative it be suuuuper. it be super.

Non-informative
jfieendkwjjfkkdn i dont
know what to say its aw-
sone.

i dont know what
to say its awsone.

Non-informative very very very beautiful. very beautiful.

Informative
it be so slow and it glitch
up.

it be so slow and
it glitch up.

B. Keywords Generation
We have obtained clean reviews based on preprocessing and

filtering in Section IV-A. In this section, we train the model for

our dataset (Section IV-B1), from which the keywords are then

generated with respect to the seven issues (Section IV-B2).

Finally, reviews for each issue are prioritized according to its

importance and usefulness to developers (Section IV-B3).
1) Training Model: To establish the model, we first convert

all words to vectors by employing word2vec [33], a neural

network implementation for learning vector representations

of words. Single sentence serves as the input of word2vec,

generally represented by a list of words. Since reviews may

consist of several sentences, we demand to split the reviews

into sentences. Here, NLTK’s punkt tokenizer [12] is employed

for the splitting. Based on the obtained parsed sentences, we

then adopt skip-gram, one flavor of word2vec, as our training

model.
Given a sequence of words to train {w1, w2, w3, ..., wT },

the training objective of skip-gram is to learn word vector

representations that are good at predicting the nearby words.

The objective function of skip-gram model is to maximize the

log probability of any context word given the current center

word, defined as

J(θ) =
1

T

T∑
t=1

∑
−m≤j≤m,j �=0

log p(wt+j |wt), (1)

where T is the number of training words, m is the size of

training context, and θ represents all variables to be opti-

mized. The log probability logp(wt+j |wt) can be trained by
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hierarchical softmax or negative sampling. We leverage the

hierarchical softmax as the training algorithm, since it achieves

better performance for infrequent words.

2) Extracting Keywords: Based on the training model, we

attain the vector representation of each word in the clean re-

views. For the seven user-concerned issues (i.e., “crash”, “bat-

tery”, “memory”, “network”, “privacy”, “spam”, and “UI”),

we capture 21 most related words to each issue based on the

cosine similarity. Given two vectors of the app issue I and the

examining word W , the cosine similarity is determined as

similarity =

n∑
i=1

IiWi√
n∑

i=1

I2i

√
n∑

i=1

W 2
i

, (2)

where Ii and Wi are the ith components of the vectors I and

W , respectively.

By employing the cosine similarity method, we obtain 21

most similar words corresponding to each issue. Instead of

regarding these words as keywords directly, we remove the

stop words which occur frequently but carry fewer meanings

in the reviews, e.g., “a”, “is”, and “the”. We eliminate the stop

words provided by the NLTK [9] corpus. Moreover, we remove

these words that appear close to the app issue in distance but

not semantically related actually. To achieve this, we employ

k-means algorithm to cluster all words into groups. Thus, these

words in the same group are consistent semantically in theory.

Table V shows similar words and keywords of “battery”.

Several similar words are removed from the keywords list

because they are not in the same cluster with battery, including

“cpu”, “ram”, “deplete”, “memory”, and “foreground”. After

getting keywords of each issue, we prioritize issues in different

platforms by a keyword-based method.

TABLE V: Similar Words and Keywords of Battery

Issue Similar Words Keywords

Battery

battery, drain, usage,
consumption, overheat,
drainer, consume, cpu,
power, ram, hog, electricity,
drainage, charger, batter,
standby, discharge, energy,
deplete, memory, foreground

battery, drain, usage,
consumption, overheat,
drainer, consume, cpu,
power, ram, hog, electricity,
drainage, charger, batter,
standby, discharge, energy,
deplete, memory, foreground

3) Ranking Reviews: To help developers understand one

specific issue deeply, we also prioritize raw user reviews re-

garding the issue according to their importance and usefulness

for app developers. We consider one review related to the

issue, if the review comprises the corresponding keywords.

For all the related reviews, we rank their importance based on

the lengths and ratings. Generally, reviews with lower ratings

and longer lengths are preferred by developers, since they tend

to express the app bugs or the necessary features [23]. The

ranking score score(t) for the issue t is defined as follows.

score(t) = e−r( 1
ln(h)+1

+ 1
ln(nt)+1

), (3)

where nt indicates the number of keywords for the issue t,
r denotes the user rating, and h represents the review length.

The definition ensures the ranking score to be ranged from 0

to 1. Finally, the reviews with lower ratings and longer lengths

are prioritized.

V. EXPERIMENTAL STUDY

In this section, we present the experimental results of

CrossMiner. To verify that CrossMiner can really help devel-

opers, we conduct several experiments and case studies.

A. Dataset

Our dataset has been collected from AppFigures [2], a web-

site providing API to crawl user reviews in multiple app stores,

including Google Play, App Store, Windows Store, etc. Our

dataset contains 4,663,316 reviews posted by users between

September, 2014 and March, 2016. 20 popular apps belonging

to 8 categories are studied. Specifically, our dataset comprises

2,637,438 reviews from Google Play, 1,687,003 reviews from

App Store, and 338,875 reviews from Windows Store, which

are large enough for review analysis [21]. Table VI lists the

details of our dataset.

TABLE VI: Review Dataset of 20 Subject Apps

Category App Name Google
Play

App
Store

Windows
Store

Communication

LINE 102,155 104,960 9,511

Messenger 244,516 234,400 15,801

Skype 186,868 8,834 35,355

Viber 161,833 109,710 21,569

WeChat 89,205 204,922 9,508

WhatsApp 241,792 85,117 25,130

Education Duolingo 65,632 59,659 12,365

TED 778 905 380

Entertainment

Netflix 97,503 45,383 28,846

Spotify Music 178,477 249,212 33,143

VLC 3,725 771 4,674

YouTube 69,300 210,371 13,404

Photography Camera360 122,350 51,777 2,319

Productivity Evernote 65,540 30,795 2,308

Shopping eBay 142,129 20,000 4,485

Social

Facebook 244,897 232,347 51,040

Instagram 249,132 13,741 55,596

Tango 122,638 200 53

Twitter 246,546 23,200 13,218

Transportation HERE 2,422 699 170

Total Reviews 2,637,438 1,687,003 338,875

B. Performance Metrics

To measure the performance of the issue prioritizing results

based on CrossMiner, we adopt the well-known Normalized

Discounted Cumulative Gain (NDCG) in the following [21]:

NDCG@k =
DCG@k

IDCG@k
, (4)

where NDCG@k ∈ [0, 1], with 1 representing the ideal rank

order. The higher value indicates the predicted rank order is

closer to the ideal rank order.
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C. Keywords Generation Results

We train the word2vec model by all the clean reviews,

3,113,111 reviews totally. As for the parameter settings, we

set the word vector dimensionality as 300, the context size

as 10, and the minimum word count as 80 empirically. The

model training process takes several minutes to tens of minutes

depending on the vocabulary size. Ultimately, we obtain the

word2vec model of our dataset. Each word in the dataset is

represented by a 300-dimension vector.

Next, we extract the keywords for each issue based on

the keywords generation method introduced in Section IV-B.

Table VII depicts the relevant keywords corresponding to the

seven issues.

TABLE VII: Keywords of Seven Issues

Issue Keywords

Battery
battery, drain, usage, consumption, overheat, drainer, con-
sume, power, hog, electricity, drainage, charger, batter,
standby, discharge, energy

Crash
crash, freeze, foreclose, lag, crush, stall, close, shut,
laggy, glitch, hang, load, stuck, startup, buffer, open,
laggs, freez, glitchy, buggy

Memory
memory, storage, space, gb, internal, gigabyte, ram, 6gb,
occupy, 4gb, mb, 300mb, 8gb, 500mb, 16gb, byte, 5gb,
gig, 2gb, 1gb, 1g

Network

network, connectivity, internet, consumption, wifi, con-
nection, reception, conection, connect, signal, 4g, wi, 3g,
broadband, fibre, lte, reconnecting, fi, wireless, reconnect,
disconnect

Privacy

privacy, security, invade, safety, personal, policy, in-
vasion, breach, protection, protect, private, disclosure,
secure, unsafe, insecure, permission, fingerprint, encryp-
tion, violation, encrypt

Spam
spam, spammer, scammer, unsolicited, harassment, un-
wanted, bot, bombard, junk, scam, advertisement, pop-
ups, scraper, hacker

UI

ui, interface, design, layout, gui, ux, clunky, redesign,
aesthetic, navigation, usability, desing, sleek, appearance,
aesthetically, intuitive, minimalistic, ugly, slick, graphic,
unintuitive

Compared to the traditional method [30], which is selecting

keywords manually for each issue, our keywords generation

method has these following advantages. First, CrossMiner can

automatically generate the keywords for each issue, which is

more time-saving and more efficient. In contrast, manually se-

lecting the keywords could be laborious. Second, CrossMiner
can extract misspelled and made-up words that are related

to the issue, which are generally ignored during the manual

process. As illustrated in Table VII, CrossMiner specifies

“conection” as a keyword for the “network” issue, although it

is a misspelled word of “connection”. Moreover, among the

keywords of the “memory” issue, made-up words (e.g., “6gb”,

“300mb”, etc.) are utilized to discuss the issue. In summary,

we present an automatic and effective keywords generation

method.

D. Can CrossMiner Prioritize App Issues Between Different
Platforms?

To answer this question, we conduct experiments on the 20

apps (listed in Table VI). The issue distributions for the apps

are described in Table XI. In this section, we employ two

apps - Spotify Music and eBay for illustration. In our dataset,

Spotify Music has 178,477 reviews from Google Play, 249,212

reviews from App Store, and 33,143 reviews from Windows

Store, while eBay has 142,129 reviews, 20,000 reviews, and

4,485 reviews from these three app stores, respectively. To

reduce the influence of “useless” reviews defined in Sec-

tion IV-A2, we only analyze the “informative” and “non-

informative” reviews of the two apps. We determine whether

a user indeed complains about a certain issue in his/her review

based on two requirements: 1) The review must contain at least

one of the keywords for the corresponding issue; 2) The rating

of the review must be less than three stars to ensure that the

reviews are expressing complaints. The experimental results

of Spotify Music and eBay are discussed in the following.

1) Case Study on Spotify Music: We focus on studying

Spotify Music in this part. After preprocessing, Spotify Music

has 154,550 clean reviews from Google Play, 217,535 clean

reviews from App Store, and 25,480 clean reviews from

Windows Store. The issue distributions are illustrated in Fig. 3

and Fig. 4, visualizing issue percentages and corresponding

average ratings, respectively.

Results: Fig. 3 presents the percentage distribution on the

seven issues for Spotify Music. We discover that the “crash”,

“network” and “memory” issues are the primary concerns of

Android users, accounting for 1.429%, 0.867%, and 0.181%,

respectively. For the iOS users, they are more concerned

about issues related to “crash” (0.732%), “network” (0.215%),

and “battery” (0.061%). Among Windows Phone users, they

complain more about the “crash”, “network”, and “UI” issues,

occupying 1.213%, 0.432%, and 0.192%, respectively.

Fig. 4 depicts the rating distribution of the seven issues.

We identify that the “privacy” (1.08), “crash” (1.35), and

“spam” (1.39) issues represent lower ratings than other issues

in Google Play. Similarly, in App Store, the three issues also

correspond to the lowest ratings, which are 1.09, 1.25, and

1.26, respectively. However, in Windows Store, the issues with

the lowest ratings become related to “battery”, “memory”,

and “crash”, with average ratings at 1.29, 1.33, and 1.37,

respectively.

Discussion: As Fig. 3 illustrates, Spotify Music users

of the three platforms concern more about issues relevant

to “crash” and “network”. Frequently crash can definitely

destroy users’ perceptions and generate unfavorable reviews.

Regarding the “network” issues, since Spotify Music is a

music streaming app that provides digital music service, users

may feel uncomfortable or annoyed if the music download-

ing is too slow or consumes too much traffic. Besides the

“crash” and “network” issues, for the Android platform, users

also complain about “memory” (0.181%), “battery” (0.127%),

“privacy” (0.125%), “UI” (0.067%), and “spam” (0.027%).

With respect to the iOS platform, 0.061% users convey dis-

satisfaction with “battery”, with other issues “UI”, “memory”,

“privacy”, and “spam” accounting for 0.052%, 0.045%, 0.04%,

and 0.009%, respectively. For the Windows Phone platform,

“UI” (0.192%) are more concerned by users, followed by
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(a) Google Play (b) App Store (c) Windows Store

Fig. 3: Percentage Distribution on Issues of Spotify Music

(a) Google Play (b) App Store (c) Windows Store

Fig. 4: Rating Distribution on Issues of Spotify Music

“memory” (0.059%), “battery” (0.125%), “privacy” (0.067%),

and “spam” (0.027%).

Overall, the iOS version seems to outperform the Android

version and Windows Phone version. For example, the per-

centages of the “crash” and “network” issues for the iOS

version are lower than those of the other versions. To verify

the fact, we also calculate the average ratings across the

three platforms. We discover that the iOS version receives the

highest ratings (4.48), with the Windows Phone version (4.1)

followed after. The Android version only receives 3.90 stars.

Therefore, we suggest that the Spotify Music developers

should focus on testing issues related to “crash” and “network”

on the three platforms, especially weighting more on the

Android version. Moreover, the developers should also design

comprehensive testing cases for the “memory” for the Android

version, “battery” for the iOS version, and “UI” for the

Windows Phone version.

To help developers gain an in-depth understanding about

one specific issue, we prioritize reviews associated with the

issue based on the method introduced in Section IV-B3.

Table VIII illustrates the top three reviews related to the “UI”

issue in Google Play. As the Table shown, all the reviews

complain about some aspects of “UI” (e.g., “no way to go

back” in review 1, “missing basic and obvious music player

features” in review 2, and “playing view the artwork is smaller

to fit in the artwork on either side” in review 3). Thus,

developers can schedule the app modification based on the

prioritized reviews.

TABLE VIII: Top Three Reviews Related to “UI” of Spotify

Music in Google Play

Rank User Review Score

1

Seriously bad user experience and interface. Once
you’ve liked or unliked a song, there’s no way to
go back even if you’ve made a mistake. I don’t
know why Spotify is so popular with suck poor
graphic design.

0.943

2

Clunky unintuitive interface missing basic and
obvious music player features. You must get the
basics right first before trying to push rubbish the
user doesn’t want.

0.914

3

Don’t like the new design, in the now playing
view the artwork is smaller to fit in the artwork
on either side. I don’t care what’s on either end of
my current playing track, or at least show it in a
way that doesn’t take up artwork space. The album
art is always an awesome part of the music’s
personality so it shouldn’t be minimised like this.
Also the now playing bar at the bottom of the
screen isn’t flat looking, looks like design from
windows XP. Not happy. An awesome service
needs an awesome interface.

0.890

... ... ...

2) Case Study on eBay: We focus on analyzing the ex-

perimental results of eBay in this part. After preprocessing,

the shopping app eBay possesses 122,977 clean reviews from

Google Play, 19,192 clean reviews from App Store, and 4,207

144



clean reviews from Windows Store. The percentage and rating

distributions on the seven issues are illustrated in Fig. 5 and

Fig. 6, respectively.

Results: Fig. 5 describes the issue percentage distribution

of eBay. As the figure illustrates, Android users are most con-

cerned about issues related to “network”, “crash”, and “UI”,

accounting for 2.737%, 1.586%, and 0.644%, respectively.

While iOS users complain more about “crash”, “UI”, and

“network”, with percentages 2.626%, 1.443%, and 0.245%,

respectively. With regard to the Window Phone platform, the

users also care about the “crash” (1.925%), “UI” (0.594%),

and “network” (0.285%), similar to the iOS users.

Fig. 6 depicts the rating distribution on the seven issues.

In Google Play, the “spam”, “privacy”, and “network” issues

correspond to the lowest ratings than the others, scored at 1.11,

1.13, and 1.177, respectively. For App Store, the three issues

with poorest ratings are “spam” (1.043), “battery” (1.1), and

“privacy” (1.143). Regarding the Windows Store, the poorly

rated issues are “battery” (1.0), “privacy” (1.0), and “spam”

(1.0).

Discussion: As Fig. 5 illustrates, users of different platforms

all complain more about “crash”, “network” and “UI”. Differ-

ences also exist across the platforms. For example, in Google

Play, 1.586% users express about the “network” issue, much

more than other two platforms. Therefore, the eBay developers

are suggested to focus on testing the “network” issue for the

Android version. As Fig. 6 depicts, users tend to give poor

ratings to the “privacy” and “spam” issues. In comparison,

the Window Phone users are more critical, since they all rate

with the lowest ratings (1.0) for these two issues.

Summary: By these two app-level case studies, we discover

that users of different platforms indeed concern about different

issues of an app. CrossMiner automatically prioritizes the

user-concerned issues. Developers can arrange and design

the testing cases for the important issues on each platform.

Moreover, based on the case studies, we also identify some

similarities across the platforms. For example, users generally

concern more about “crash” and “network” issues.

E. Evaluation of Prioritizing Performance

In this section, we aim at evaluating the issue prioritization

of CrossMiner. If the prioritized issues are consistent with the

practical user concerns, the performance can be verified.

We employ Spotify Music for the performance verification,

and the official user forums as the groundtruth [14]. An

issue with more user views indicates that the issue is more

concerned by users. Thus, we obtain the ranks of the seven

issues, with an example of Android forums illustrated in

Table IX.

Similarly, we capture the issue rankings from the official

iOS community and Window Phone community. For the iOS

version, the ranked issues are crash(53683), memory(10797),

UI(8439), battery(6174), connection(4767), spam(1903), and

privacy(1558). Regarding the Windows Phone version, the

issue order is crash(4097), connection(1362), battery(300),

UI(282), memory(229), spam(94), and privacy(76). We then

TABLE IX: Ranked Issues from Android Community of

Spotify Music

Rank Views User Feedback Issue
1 56416 No internet connection available Network

2 32495 No SD Card storage !! Memory

3 24797 Spotify for Android causing massive battery
drain and heating of phone

Battery

4 11315 Spotify crashes on Android Crash

5 1796 Issues with Android UI context menu touch
area

UI

6 197 Intrusive or what!!!!!! Privacy

7 80 Tired of the push notification spam! Spam

compare the prioritization results attained by CrossMiner with

the groundtruth for these three platforms. The NDCG@7

scores introduced in Section V-B are utilized for the mea-

surement, with results described in Table X.

TABLE X: Prioritizing Results

Android iOS Windows Phone

NDGC@7 0.943 0.911 0.982

By examining the results, we discover that CrossMiner
achieves 0.943, 0.911, and 0.982, in terms of NDGC@7 for

the Android, iOS, and Windows Phone versions, respectively.

The average accuracy arrives at 0.945, which indicates that

CrossMiner prioritizes issues effectively and reflects the user

concerns accurately.

F. Can Cross-Miner Give Platform-level Advice to Develpo-
ers?

In this section, we aim at exploring the platform-level issues.

Fig. 7 illustrates the issue distributions with respect to the 20

subject apps in Google Play, iOS, and Windows Phone.

Results: As Fig. 7 depicts, each bar in the graph represents

the percentage of an issue. We discover that the top three issues

Android users complain most about are “crash” (1.76%),

“network” (0.85%), and “memory” (0.31%). Similarly, the iOS

users also express more about “crash” (4.48%), “network”

(1.05%), and “memory” (0.48%). For the Window Phone

users, they are more concerned about “crash” (2.76%), “net-

work” (0.66%), and “battery” (0.38%).

Discussion: We identify that users for all the platforms

concern more about the “crash” and “network” issues. So

developers should spend more time on these two issues during

app development. Moreover, in Khalid et al.’s study [29], “app

crashing” and “network problem” are ranked at the third and

fourth position among all the most frequent complaints list

(the top two complaints are “functional error” and “feature

request”, which are excluded from our study), which is com-

patible with our findings.

G. Parameter Study

In our framework, one key problem is to set the number

of the similar words n for each issue. To obtain an optimal

solution, we conduct an experimental study on the parameter
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(a) Google Play (b) App Store (c) Windows Store

Fig. 5: Percentage Distribution on Issues of eBay

(a) Google Play (b) App Store (c) Windows Store

Fig. 6: Rating Distribution on Issues of eBay

Fig. 7: Average Percentage Distributions on Issues for Differ-

ent Platforms

settings. We first determine n for the similar words extrac-

tion, and obtain the ultimate keywords corresponding to each

issue based on Section IV-B. We then define “Cover-rate” to

compute the ratio of the number of keywords to the number

of similar words extracted in the first step. Smaller Cover-

rate indicates that the similar words comprise more unrelated

words to the issue. Fig. 8 depicts the Cover-rate along with

the number of similar words n.

Fig. 8 illustrates that fewer similar words correspond to

relatively high Cover-ratio. However, some keywords will be

Fig. 8: Influence of n on Cover-rate

missed if n is set too small. On the other hand, larger numbers

of similar words can cover most keywords, but also carrying

with more unrelated words. Therefore, we set the number of

the similar words n to be 21 due to the higher performance.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our work

and talk about the steps we take to mitigate these threats.

First of all, the percentages in the results are so low and

the small differences of the results might not be practically

significant. Two reasons account for the low percentages: 1)
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We remove the “useless” reviews but keep the other two type

reviews (i.e., “non-informative” reviews and “informative”

reviews). To our knowledge, the “non-informative” reviews

account for a large proportion of all reviews which lower the

percentages. 2) The 20 apps in our dataset are popular among

three platforms. The average rating is about 3.5 star which

means the most of reviews are positive (more than 2 star). And

we only regard negative reviews as user complaints. Moreover,

each app has more than 200 thousand user reviews in our

dataset. With massive user reviews, even small differences

can reveal the prioritization of user concerns for app issues.

Furthermore, we use analysis of variance (ANOVA) [1], a

statistical hypothesis test for significance analysis, to check

if the cross-platform differences are significantly different.

Among all the 20 apps in Table XI, the average p-value

of ANOVA is 0.012 which is close to 0.01. Through the

ANOVA, we verify that the cross-platform differences are

indeed significantly different.

Second, we just analyze seven issues in the paper, which

may not cover all the app issues. And these issues may be not

mutually exclusive. However, since our framework can identify

the keywords related to the issue effectively, other types of

issues can also be analyzed similarly. This also illustrates the

scalability and usability of our framework. Moreover, we aim

to help developers by prioritizing issues from users perspective

instead of source code.

Third, we are uncertain whether our discoveries can really

facilitate the app testing process for app developers. Through

the experiments, our framework verifies that issues for an app

can be distributed differently for different platforms, and it

can help developers prioritize which types of issues should be

addressed for which platform. Developers can prioritize the

testing cases accordingly, which are supposed to improve the

efficiency of the testing procedure. Moreover, the prioritized

issues are consistent with the issues reflected on the user

forums. Therefore, we believe that our framework can facilitate

the app development.

VII. RELATED WORK

Our study on understanding app issues for different plat-

forms is inspired by two lines of work, namely, cross-platform

learning, and app review analysis.

A. Cross-Platform Learning

Various studies have focused on the similarities and dif-

ferences among different mobile application platforms. Tor-

Morten et al. [26] utilized a mobile game app to compare

the four platforms (i.e., Android, Windows Phone, iOS, and

Firefox OS) in terms of technical functionality, APIs, devel-

opment effort, development support and deployment to live

devices. In [36], kim discovers the differences of development

environment for iOS and Android OS. Zinaida et al. [20]

conduct an online questionnaire to compare users on different

platforms based on the demographic differences, security and

privacy awareness. In Luo et al.’s work, they investigate the se-

curity impact of UI-based APIs in the WebView component for

Android, iOS, and Windows Phone. Mohd et al. [19] examine

the security requirements on Android and iOS platforms with

respect to the application sandboxing, memory randomization,

encryption, data storage format and built-in antivirus. Liu et
al. [32] explore the Internet streaming access on Android and

iOS by analyzing a server-side workload collected from a top

mobile streaming service provider. In Zhou et al.’s work [37],

they identify the different topics and attributes on different

platforms (i.e., desktop, Android, and iOS) from bug reports.

B. App Review Analysis

During the app development, the developers have limited

contact with potential users [31]. The user reviews capture

unique perspectives about the users’ perception of the apps

[29], and can facilitate the software development. In [25], the

authors identify several user-concerned factors from online

user reviews. In Platzer’s work [35], an automated system

is specially designed for user review classification. Iacob et
al. [27] design “MARA” (Mobile App Review Analyzer) to au-

tomatically retrieve app features from user reviews. Similarly,

in [22], the users’ major concerns and preferences are extracted

from user reviews. Gao et al. [23] [24] utilize user reviews to

observe the app issues over versions. In [28], user reviews

are more deeply analyzed to capture the relations between

user complaints and low ratings. Kong et al. [30] explore the

relations between users’ reviews and security-related behaviors

(i.e., spamming, financial issue, over-privileged permission,

and data leakage). The work discovers that user reviews can

reflect how users think about the security issues.

VIII. CONCLUSION

This paper proposes a novel framework named CrossMiner
to automatically analyze app issues from user reviews by

employing a keyword-based method. We aim at discovering

the differences and similarities of issue distributions on three

popular app stores, i.e., Google Play, App Store, and Windows

Store. Based on the identified issue distributions, app develop-

ers can design and arrange the testing cases more efficiently

for different platforms. To our best knowledge, CrossMiner is

the first work that explores app issues on different platforms

from users’ perspective. The experimental study also verifies

that our framework can reflect the user concerns accurately.
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TABLE XI: Issue Distributions for the 20 Apps

App Name Platform Battery Crash Memory Network Privacy Spam UI

Camera360

Google Play 0.202% 0.664% 0.277% 0.048% 0.033% 0.008% 0.058%

App Store 0.032% 1.419% 0.089% 0.024% 0.008% 0.0% 0.041%

Windows Store 0.12% 0.598% 0.0% 0.0% 0.0% 0.0% 0.06%

Duolingo

Google Play 0.003% 0.064% 0.007% 0.044% 0.0% 0.0% 0.0%

App Store 0.0% 0.069% 0.006% 0.061% 0.0% 0.003% 0.026%
Windows Store 0.0% 0.467% 0.0% 0.308% 0.0% 0.0% 0.0%

eBay

Google Play 0.072% 1.586% 0.092% 2.737% 0.044% 0.022% 0.644%

App Store 0.052% 2.626% 0.063% 0.245% 0.036% 0.12% 1.443%
Windows Store 0.095% 1.925% 0.048% 0.285% 0.143% 0.024% 0.594%

Evernote

Google Play 0.071% 0.206% 0.177% 0.102% 0.059% 0.076% 0.087%

App Store 0.017% 3.253% 0.084% 0.226% 0.077% 0.02% 0.259%

Windows Store 0.051% 2.092% 0.153% 0.153% 0.051% 0.051% 0.459%

Facebook

Google Play 0.594% 5.71% 1.301% 0.867% 0.231% 0.057% 0.066%

App Store 1.843% 11.923% 0.661% 1.297% 0.416% 0.097% 0.122%

Windows Store 0.225% 5.647% 0.144% 1.054% 0.262% 0.069% 0.398%

HERE

Google Play 0.288% 1.248% 0.24% 0.672% 0.096% 0.0% 0.24%

App Store 0.796% 0.955% 0.0% 0.478% 0.318% 0.0% 0.478%
Windows Store 0.694% 2.778% 0.0% 0.0% 0.0% 0.0% 0.0%

Instagram

Google Play 0.054% 1.456% 0.05% 0.437% 0.033% 0.09% 0.02%

App Store 0.018% 1.89% 0.073% 0.336% 0.073% 0.109% 0.009%

Windows Store 0.068% 0.996% 0.015% 0.367% 0.007% 0.011% 0.063%

LINE

Google Play 0.144% 1.554% 0.275% 1.048% 0.09% 0.21% 0.042%

App Store 0.246% 8.623% 0.22% 1.6% 0.246% 0.273% 0.396%
Windows Store 0.124% 1.751% 0.11% 0.386% 0.014% 0.083% 0.331%

Messenger

Google Play 0.868% 2.19% 1.02% 0.99% 0.531% 0.017% 0.042%

App Store 0.565% 4.3% 0.932% 1.048% 1.996% 0.109% 0.069%

Windows Store 4.71% 2.418% 0.237% 1.323% 0.628% 0.03% 0.266%

Netflix

Google Play 0.05% 1.198% 0.042% 0.949% 0.01% 0.004% 0.045%

App Store 0.087% 6.017% 0.083% 2.216% 0.018% 0.004% 0.179%

Windows Store 0.03% 3.8% 0.083% 0.838% 0.011% 0.0% 0.315%

Skype

Google Play 0.448% 2.396% 0.247% 0.982% 0.077% 0.048% 0.092%

App Store 0.824% 4.154% 0.167% 2.125% 0.298% 0.251% 0.919%
Windows Store 0.326% 3.769% 0.082% 0.96% 0.178% 0.049% 0.861%

Spotify

Google Play 0.127% 1.429% 0.181% 0.867% 0.125% 0.027% 0.067%

App Store 0.061% 0.732% 0.045% 0.215% 0.04% 0.009% 0.052%

Windows Store 0.027% 1.213% 0.059% 0.432% 0.016% 0.0% 0.192%

Tango

Google Play 0.062% 0.18% 0.076% 0.298% 0.175% 0.05% 0.011%
App Store 0.0% 0.0% 0.0% 0.0% 0.556% 0.556% 0.0%

Windows Store 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

TED

Google Play 0.0% 1.62% 0.147% 0.295% 0.147% 0.0% 0.295%

App Store 0.0% 3.385% 0.0% 0.923% 0.0% 0.0% 0.154%

Windows Store 0.0% 4.237% 0.0% 0.282% 0.0% 0.0% 1.13%

Twitter

Google Play 0.09% 2.19% 0.083% 0.262% 0.065% 0.069% 0.193%

App Store 0.079% 3.201% 0.168% 0.299% 0.126% 0.229% 0.257%

Windows Store 0.12% 3.549% 0.094% 0.41% 0.034% 0.077% 0.65%

Viber

Google Play 0.179% 0.748% 0.171% 1.125% 0.069% 0.549% 0.036%

App Store 0.083% 1.252% 0.051% 0.935% 0.125% 0.583% 0.025%

Windows Store 0.327% 1.486% 0.07% 1.115% 0.013% 0.077% 0.154%

VLC

Google Play 0.149% 1.295% 0.149% 0.0% 0.0% 0.0% 0.1%

App Store 0.837% 12.552% 0.279% 1.395% 0.0% 0.0% 0.837%

Windows Store 0.13% 12.588% 0.285% 0.026% 0.0% 0.0% 0.856%

WeChat

Google Play 0.189% 1.007% 0.426% 0.612% 0.124% 0.042% 0.108%

App Store 0.058% 0.499% 0.292% 0.704% 0.241% 0.059% 0.074%

Windows Store 0.489% 1.363% 0.103% 0.309% 0.051% 0.026% 0.283%

WhatsApp

Google Play 0.064% 0.582% 0.216% 0.288% 0.126% 0.043% 0.085%

App Store 0.337% 5.657% 3.191% 1.435% 0.366% 0.047% 0.083%

Windows Store 0.333% 1.386% 0.136% 0.278% 0.115% 0.0% 0.202%

YouTube

Google Play 0.133% 2.241% 0.137% 2.447% 0.01% 0.014% 0.238%

App Store 0.404% 9.155% 0.114% 2.207% 0.01% 0.025% 1.531%
Windows Store 0.06% 1.306% 0.103% 0.275% 0.0% 0.0% 0.232%
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