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Abstract—Bug tracking systems are widely used to track bugs
from users during the lifecycle of software systems for reliability
maintainence. When software systems have a large user base,
which is common in practice, different users may encounter a
same bug and then generate many duplicate bug reports. In a
large project, each bug report is usually assigned to a different
developer or team to parallelize the bug debugging and fixing
activities. The presence of duplicate bug reports thus leads to
many unnecessary efforts of developers spending on debugging
a same issue. To speed up the bug fixing process and save
the cost of developers, there is a high demand for automated
detection of duplicate bug reports. In this paper, we explore
the use of powerful deep learning techniques, including word
embedding and Convolution Neural Networks, to calculate the
similarity between a pair of bug reports and thus identify possible
duplicates. In contrast to previous work that consider only
common words between bug descriptions for lexical similarity
computation, our approach is able to better capture semantic
similarity between words. We further improve traditional CNN
models by combining some domain-specific features extracted
from bug reports. Evaluation results on the bug reports from
four popular open-source projects show that DBR-CNN has made
a significant improvement on duplicate detection accuracy over
traditional approaches.

Keywords-Software reliability; bug reports; duplicate detec-
tion; deep learning; CNN

I. INTRODUCTION

Modern software systems are not only growing fast in
complexity and size, but also keep updating frequently under
the agile development mode. It is a common case that a
software system has tens of components, built by hundreds
of developers. It is thus impossible to guarantee every release
of a complex software system is bug-free. Developers usually
employ a bug tracking system (e.g., Jira, Bugzilla) to file bugs
found by testers and issues encountered by users. Fixing open
bugs has become a daily job for developers to aid in improving
reliability of software systems.

However, it is a pain for developers when too many du-

plicate issues are reported [1], [2]. For example, the average
ratio of duplicate issues reaches about 20% in our studied
systems as shown in Table. I1. There are two main reasons for
such duplication of bug reports: 1) Popular software systems
usually have up to millions of users. Different users or testers
may encounter the same issue in totally different ways. The
large use base can lead to repeated triggers of a same bug. 2)
As software systems update new versions frequently, multiple
versions of software systems for the same application may
co-exist. Then, users may have different visions of software
systems installed. A resolved issue in higher version may be
encountered again in other lower version. All such duplicated
issues, if not detected, it will increase the debugging cost of
developers. For a large software system, it is not uncommon
that duplicate issues are assigned to different developers or
teams to resolve. Due to its great importance, detection of
duplicate bug reports has attracted much attention from both
researchers and practitioners [2]–[6].

Although the use of bug tracking systems helps a lot in the
whole process from bug reporting to bug fixing, there are still
some challenges to be addressed in terms of duplicate bug
report detection. Bug tracking systems assist with bug report
collection, but it by now provides no support for automated
duplicate detection. Hence, the triager needs to manually
inspect whether a bug report is a duplicate or not [6]. This
process is not only time-consuming and error-prone, but also
enhances the cost of software maintenance [5]. Moreover, the
large number of bug reports makes it impractical for a triager
to manually handle so many duplicate bug reports. As a result,
automated detection of duplicate bug reports is urgently in
need.

In order to achieve this goal, some studies are devoted
to automating the detection process, which mainly include
two ways. The first one is employing the traditional Natural

1https://github.com/LogPAI/bugrepo



TABLE I
DUPLICATE BUG IDENTIFICATION

Project Timespan #Components #Issues #Issue/day #Duplicates %Duplicates Median Resolving Time
Mozilla Core 1997/03/28 ∼2013/12/31 130 205,069 33.5 44,691 21.8% 102.1 days

Firefox 1999/07/30 ∼2013/12/31 52 115,814 22.0 35,814 30.9% 76.4 days
Thunderbird 2000/04/12 ∼2013/12/31 23 32,551 6.5 12,501 38.4% 83.7 days

Eclipse Platform 2001/10/10 ∼2013/12/30 21 85,156 19.1 14,404 16.9% 29.8 days
JDT 2001/10/10 ∼2013/12/31 6 45,296 10.1 7,688 17.0% 23.0 days

Spark 2010/04/01 ∼2018/01/10 29 22,639 8.0 3,077 13.6% 7.1 days
Hadoop 2005/07/24 ∼2017/11/01 45 12,855 2.9 1,861 14.5% 14.3 days

MapReduce 2006/03/17 ∼2018/01/15 63 7,019 1.6 977 13.9% 28.2 days
Hdfs 2006/04/06 ∼2018/01/12 71 12,779 3.0 1,659 13.0% 9.7 days

HBase 2007/02/27 ∼2018/01/21 95 19,788 5.0 1,340 6.8% 6.8 days
Cassandra 2009/03/07 ∼2018/01/21 24 14,071 4.3 2,083 14.8% 8.6 days

Mesos 2011/02/16 ∼2018/01/26 40 8,454 3.3 800 9.5% 23.5 days

TABLE II
EXAMPLES OF BUG REPORTS FROM JIRA

ID SPARK-22888 SPARK-22899
Type Bug Bug
Priority Critical Major
Component ML ML; Structured Streaming
Title OneVsRestModel does not work with Structured Streaming OneVsRestModel transform on streaming data failed.
Description OneVsRestModel uses Dataset. persist; which does not work

with streaming. This should be avoided when the input is a
streaming Dataset.

OneVsRestModel transform on streaming data failed. Because
of it persisting the input dataset; which streaming do not
support.

Status Resolved Resolved
Resolution Duplicate Fixed
Duplicated issue SPARK-22899 SPARK-22888
Assignee Unassigned Weichen Xu
Reporter Joseph K. Bradley Weichen Xu
Created time 2017/12/22,22:38:00 2017/12/25,10:20:00
Affects version 2.2.1 2.2.1
URL https://issues.apache.org/jira/browse/SPARK-22888 https://issues.apache.org/jira/browse/SPARK-22899

Language Processing (NLP) and Information Retrieval (IR)
techniques to help with duplicate detection [6], [7]. However,
in such a way, when a new bug report is received, it needs
to choose key words to search in bug tracking systems.
The other one is to perform classification by employing a
threshold to determine whether the newly-reported bug report
is duplicate or not [8]–[10]. Although these approaches can
ease the pressure of triager partially, the accuracy of duplicate
detection is still far from satisfaction. Both ways of the
above approaches, however, do not fully take into account
the semantic information in bug report descriptions. Recently,
Deep Learning (DL) techniques are employed to enhance the
performance of NLP in IR [11], [12], since DL techniques can
effectively extract complicated non-linear features.

Motivated by the above intuition, we explore the following
problems:

• Can we exploit DL techniques in automated detection
of duplicate bug reports to improve the detection perfor-
mance?

• Can we take advantages of both syntactic and semantic
features for automated detection of duplicate bug reports
by using DL?

In this paper, we propose a framework named detecting
Duplicate Bug Reports with Convolutional Neural Network
(DBR-CNN), which extracts both syntactic and semantic fea-
tures from bug reports. In summary, the contributions of this

paper are three-fold:
• We construct a CNN-based framework to automate the

detection process of duplicate bug reports, which obtains
both syntactic and semantic information of bug reports.

• We combine the CNN-trained features and some domain-
specific features (e.g., component, bug serverity, issue
time), which benefits the automated detecting of duplicate
bug reports.

• We evaluate our approach on four bug report datasets
collected from popular open-source projects, and the
results show that DBR-CNN is effective in enhancing
the detection performance and the proposed DBR-CNN
is also extensible and flexible.

The rest of this paper is organized as follows. Section II
presents the background of duplicate bug reports. Section III
details our approach to detect duplicate bug reports with
convolutional neural network. Section IV shows the exper-
imental results. We discussion the limitations of our work
in Section V. Section VI describes the related work and
Section VII concludes the paper.

II. BACKGROUND

In this section, necessary background information is intro-
duced. We first elaborate styles of bug reports and duplicate
bug reports, then present word embedding, finally describe the
Convolutional Neural Network (CNN).
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A. Bug Report

A bug report is a structured record consisting of several
fields [6], which can be collected by bug tracking systems. As
shown in Table. II, there are examples of two bug reports from
Jira2. It lists the primary fields which denote different types of
bug information, such as ID, type, priority, Component, title,
description, status, resolution, duplicated issue, assignee, re-
porter, affects version, URL and so forth. Specifically, field ti-
tle is a summary of the defect problem and the field description
is the elaborate description of how the defect occurred. Fields
title and description are described using natural language
type named textual features, while other fields such as status
and resolution are presented with other perspectives named
domain-specific features [7]. In this paper, we have collected
four types of bug reports from Jira to validated our approach,
which include hadoop, hdfs, mapreduce and spark.

B. Detecting Duplicate Bug Reports

Table. II shows an example of a pair of duplicate bug reports
with ID SPARK-22888 and SPARK-22899 respectively. We
can see that as to the same defect of OneVsRestModel, two
bug reports are described with different words and syntaxes
from different reporters Joseph K. Bradley and Weichen Xu.
If a new incoming bug report is duplicate such as SPARK-
22888, then it will be marked as “duplicate”. To reduce the

2https://jira.atlassian.com/

time consumption and enhance the efficiency of bug handle,
it should be detected whether these bug reports have been
submitted before or not when same bug reports are incoming.

Fig. 1 illustrates a typical automatical process of detecting
duplicate bug reports [2], [6], [7], [13]. Firstly, when end users
or testers encounter software defects, the defects information
will be reported to bug repository by employing bug tracking
systems. Secondly, due to the multiple fields, the bug reports
should be preprocessed which mainly includes three steps. In
addition, the bug report feature can be extracted by trans-
forming words into representation which would capture the
syntactic and semantic information [14]. After that, classifiers
can detect whether the new incoming bug report is duplicate
or not by using the feature representation.

C. Word Embedding

Word embedding3 is the collective name for a set of
language modeling and feature learning techniques in NLP
where words or phrases from the vocabulary are mapped to
vectors of real numbers. There exists some work focusing on
word embedding which includes Neural Network Language
Model (NNLM), Latent Semantic Analysis (LSA) and Latent
Dirichlet Allocation (LDA), CBOW, Skip-gram [15]–[18].
Specially, Mikolov et al. [18] publish the codes of continuous
bag-of-words and skip-gram architectures for computing the

3https://en.wikipedia.org/wiki/Word embedding



word vectors, which not only enhance the word vectors quality
but also reduce the computational complexity4.

Thus, the learning high-quality word vectors can be used
to detect the similar words or other fields, such as questions,
issue reports, and bug reports, by finding the word vectors
similarity. In our work, word embedding is employed after the
pre-processing step in which the skip-gram neutral network is
adopted.

D. Convolutional Neural Network
CNNs are feed-forward multilayer neural networks, which

are constructed by one or more convolutional and subsampling
layers with fully connected layers optionally. CNNs have
successfully been employed to ID-grid of time-series data
and 2D grid of image Data [19]. Furthermore, CNNs are
also widely adopted in many practical domains such as speed
recognition [20], image classification [21] and NLP [14]. In
this paper, we employ a CNN to extract the syntactic and
semantic feature vectors as shown in Fig. 3 which will be
elaborated in section III.

III. APPROACH

In this section, we demonstrate our proposed approach
DBR-CNN as shown in Fig. 2. First we introduce the data
preprocessing and word embeddings. And then, we employ
CNN to represent bug reports. Finally, CNN-trained features
and domain-specific features are combined to enhance the
performance of automated detection, where CNN training
procedure is also presented.

A. Data Preprocessing
As shown in Table. II, bug reports include much textual

information, then a standard NLP process is employed in our
approach as the first step. Generally, there are three steps of
data preprocessing: [2], [22]

• Parsing tokens: the words in the textual fields of bug
reports will be parsed (i.e., title etc.). And the parsed
textual fields will be turned to a stream of characters, in
which such as capitals, punctuation, brackets etc will be
removed. A word can be regarded as a token.

• Stemming: The target of stemming is to discover the
stem of words without multiple grammatical forms. For
example, the words does and structured are converted to
do and structure respectively of SPARK-22888 in Table II.

• Removing stop words: Same words that do not carry
significant information will be removed, i.e., the, a, and
that etc.

B. Word Embeddings
As shown in Fig. 2, word embeddings are employed to trans-

fer tokenized words into real-valued feature vectors by using
unsupervised pre-training [14]. Here, we randomly initialize
the word embeddings to be uniform distributions in the range
[-0.5,0.5) and divided by the length of the embedding layer.
Detailed discussion of the embedding layer can be found in
Section IV.

4https://code.google.com/p/word2vec/

C. Bug Report Representation via CNN

As detailed in Fig. 3, we employ word embeddings as
the input layer, which provide real-valued feature vectors to
the convolutional layer. Then, the convolutional layer and
max-pooling layer are used to build two distributed vector
representations of any two input bug reports. After that, we
can obtain the similarity score (i.e., textual features) of two
input bug reports. In addition, domain-specific features (i.e.,
Component, Create time and Priority etc.) and textual features
are concatenated. Finally, the concatenated vectors are put into
the output layer with logistic regression for classification.

1) CNN Architecture: Owing to the different sizes of bug
reports, we use d to represent the dimensionality of the word
vectors. Also we employ s to denote the length of an input
bug reports, so we can obtain an s× d matrix of bug reports
in which rows express distributed tokens [23].

Given a weight vector w ∈ Rh×d where h represents the
region size, there are h × d parameters to be trained. we
suppose the bug report matrix by U ∈ Rs×d, and then, employ
U [i : j] to denote the sub-matrix of U from row i to row j.
The convolutional layer iteratively employs the filter on the
sub-matrices of U as follow:

vi = w · U [i : i+ h− 1], (1)

where i = 1...s − h + 1, and · denotes the dot product. In
addition, the length of v is s − h + 1. To obtain the feature
maps of bug reports with CNN, a bias term and an activation
function are employed as follows:

gi = f(vi + b), (2)

where b denotes the bias with b ∈ R and f is the activation
function with hyperbolic tangent function.

2) Combining Domain-specific Features: From (2), we can
obtain the feature maps (g1, g2) of the input pair of bug reports
(rg1, rg2). And the cosine similarity of (rg1, rg2) is defined as:

Sim(rg1 , rg2) =
g1 · g2
‖g1‖ ‖g2‖

. (3)

In our model DBR-CNN, we enrich the textual features by
concatenating corresponding domain-specific features, which
benefits the automated detecting of duplicate bug reports.
Thus, the similarity of two CNN-trained feature maps of bug
reports pairs can be combined to domain-specific features
of bug reports. Then, the concatenated vector is defined as
follows:

c = [Sim Component Create time Priority], (4)

where the concatenated vector c is fed into the output layer
with logistic regression classifier as shown in Fig. 3.

IV. EXPERIMENTS

A. Data

In this paper, four types of bug reports from Jira bug
tracking system are collected, which include hadoop, hdfs,
mapreduce and spark. Table III shows the summary of the four
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TABLE III
SUMMARY OF DATASETS

DataSets All Bug Reports Duplicate Bug Reports Time Frame
Hadoop 1840 228 Jul/24/2005-Jan/12/2018

Hdfs 12779 1569 Apr/06/2006-Jan/12/2018
Mapreduce 7019 957 Mar/17/2006-Jan/15/2018

Spark 22639 2963 Apr/01/2010-Jan/10/2018

TABLE IV
DATASETS DIVISION

DataSets Training Instances Validation Instances Test Instances Total Instances
Hadoop 153 22 44 219

Hdfs 1000 143 286 1429
Mapreduce 526 76 151 753

Spark 2296 328 657 3281

datasets, which are from different applications. As shown in
Table III, we employ the bug report datasets reported between
July 2005 to January 2018. In addition, the bug report datasets
hadoop, hdfs, mapreduce and spark include 1,840, 12,779,
7,019, 22,639 bug reports respectively, in which the numbers
of duplicate bug reports are 228, 1,569, 957, 2,963 severally.

What’s more, the number of duplicate buy reports will be
further reduced owe to same special cases. Different from
Sun et al. [7] choose the first M reports in the repository of
which 200 reports are duplicates as training. In this work, for
example, the bug report dataset Hdfs includes 12,779 bug re-
ports and 1,569 duplicate bug reports which are real duplicates
and have the duplicate issue filed information without empty.
Specially, there may be two pairs where A bug report and B
bug report are duplicate (A → B), also B bug report and
A bug report are duplicate (B → A). Due to the repeats of
duplicate bug reports, we only choose one of them according
to the issue ID. In addition, the bug reports in which the issue
IDs in URL are not consistent with their real ID will also be
removed. Thus, the number of duplicate bug reports decreases

from 1,569 to 715 in Hdfs dataset.

Since the number of duplicate bug reports is much less than
the number of non-duplicate bug reports, the imbalance of data
should be handled. To address this problem, a pair of two bug
reports which includes two duplicate bug reports is defined as
positive sample, while a pair of two bug reports which includes
two non-duplicate bug reports is defined as negative sample.
In this paper, we set the number of positive samples as the
same as the number of negative samples approximately. We
extract positive samples from each dataset deleting overlaps
and invalid bug reports. Table IV shows that the total samples
are divided into three parts, one part as the training set which
covers 70%, the second part as the validation set which is
10%, and the last part as the test set which has 20% for our
experiments. For example, we can obtain 715 duplicate bug
reports for Hdfs dataset after deleting overlaps and invalid bug
reports from 1,569 duplicate bug report as shown in Table III.
After that, we construct the number of negative samples as
714 according to the number of positive samples. Then, the
number of total instances is 1,429 as shown in Table IV. Thus,



we select 1,000 bug reports as the training instances, 143 bug
reports as the validation instances, 286 bug reports as the test
instances respectively.

B. Evaluation Measures

Two widely adopted metrics F-measure [19] and Accu-
racy [11] are employed in this paper to measure the perfor-
mance of detection.

We follow the notations of F-measure definition in
work [19], by using the following equations:
Precision (P ): The ratio of the number of positive samples
correctly classified as duplicate to the number of samples
classified as duplicate.
Recall (R): The ratio of the number of positive samples
correctly classified as duplicate to the number of positive
samples.
F-measure (F -measure): The traditional F-measure is the
harmonic mean of precision P and recall R as follows:

F -measure : F =
2 ∗ P ∗R
P +R

. (5)

And the Accuracy is defined as:

Accuracy =
Number of correct detections

Number of bug report samples
(6)

The higher the F-measure and Accuracy are, the better the
detection performance presents.

C. Baselines

To study the effectiveness of our DBR-CNN approach, we
compare the performance of three typical approaches:

• VSM [2]: The vector space model represents each word in
a multi-dimensional space. Each dimension of the space
corresponds to a word. The position along each axis in
this space depends on the frequency of the word occurring
in the text. The similarity between two words is then
measured in terms of distances (cosine distance here for
its good performance) in this vector space.

• Clustering [5]: Jalbert and Weimer build a linear regres-
sion model based on the results of clustering and textual
similarity of bug descriptions. The incoming bugs are
determined duplicate if they present higher similarities
to reports in historical data. Specifically, the clustering
graph algorithm designed for social networks is applied.

• Traditional CNN: A CNN model is employed directly
to classify the subject datasets without considering other
features. We use this model as baseline to illustrate the
usefulness of domain-specific features in duplicate bug
detection.

When comparing with the performance of above approaches
with our DBR-CNN approach, we employ the same bug report
datasets, preprocessing, tools, and handling data imbalance.

D. Results

We illustrate experimental results of different approaches on
the four datasets in this part.

TABLE V
PERFORMANCE COMPARISON WITH TRADITIONAL CNN APPROACH

DataSets F-measure Accuracy
Traditional DBR-CNN Traditional DBR-CNN

hadoop 0.750 0.833 0.818 0.853
hdfs 0.897 0.942 0.909 0.961

mapreduce 0.734 0.976 0.801 0.973
spark 0.875 0.968 0.886 0.977

Average 0.814 0.930 0.853 0.941

1) Comparison with Baselines: To demonstrate the effec-
tiveness of employing deep models, we compare DBR-CNN
with the baseline approaches without deep neural networks
involved, i.e., VSM and clustering, shown in Fig. 4. As can be
seen, our model can always achieve the best results on the four
datasets, with average F-measure and accuracy at 0.930 and
0.941 respectively. Specifically, DBR-CNN model increases
VSM by 83% for F-measure and 39% accuracy on average,
while improving the clustering approach by 46% and 100%
respectively. The remarkable improvement indicates that deep
models can better learn the semantic representations of bug
reports than non-deep models.

2) Comparison with traditional CNN approach: To verify
whether the feature-enhanced model DBR-CNN can improve
the performance of original CNN model, we conduct the
comparison on the four datasets, with results depicted in
Table V.

As can be seen, our model consistently outperform the
traditional model on all the datasets, increasing by 14.2% for
F-measure and 10.2% for accuracy on average. In terms of ac-
curacy, DBR-CNN achieves 0.853, 0.961, 0.973, and 0.977 for
hadoop, hdfs, mapreduce, and spark, respectively, enhancing
traditional CNN by 3.5%∼17.2%. The obvious improvement
demonstrates the effectiveness of enriching textual features
with the domain-specific information for detecting duplicate
bugs. From further observation, we discover that DBR-CCN
greatly improves the performance of traditional CNN on
hadoop and mapreduce datasets, with increase rate at 8.3% and
24.2% for F-measure respectively. As Table III and Table IV
shown, both datasets have relevantly few available bug reports
compared to other two datasets. We therefore attribute the low
performance of traditional CNN to that the model may fail
to capture the textual information with a handful of training
data [24]. Overall, DBR-CNN can well modify the traditional
CNN with other information, i.e., component, create time, and
priority, especially for small datasets.

3) Performance Under Different Parameter Settings: We
explore the impact of parameter settings on the performance
of DBR-CNN. Fig. 5 illustrates the variations of F-measure
(above) and accuracy (below) along with different filter num-
bers and filter lengths on the four datasets. As Fig. 5 (a) and (c)
shown, more filters are beneficial to generate more represen-
tative features for bug reports and lead to better performance.
Most datasets except hadoop exhibit sheer increase when the
filter number range from 20 to 100. When filter number
becomes larger than 100, the performance of DBR-CNN tends
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Fig. 5. Performance of DBR-CNN under different parameter settings

TABLE VI
PERFORMANCE COMPARISON WITH DIFFERENT WORD EMBEDDINGS

Approaches DataSets F-measure Accuracy
Random Glove Word2vec Random Glove Word2vec

Traditional CNN

Hadoop 0.662 0.850 0.843 0.726 0.908 0.867
HDFS 0.829 0.852 0.831 0.848 0.882 0.852
Spark 0.796 0.835 0.839 0.822 0.857 0.849

MapReduce 0.712 0.697 0.729 0.782 0.753 0.849

DBR-CNN

Hadoop 0.678 0.962 0.946 0.752 0.989 0.964
HDFS 0.974 0.935 0.837 0.982 0.957 0.895
Spark 0.950 0.961 0.931 0.964 0.972 0.948

MapReduce 0.924 0.924 0.926 0.946 0.946 0.960
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Fig. 7. Performance comparison with accuracy

to stabilize at a high point. For hadoop, its performance
increase generally requires much more filter numbers (150 in
our case), which may be due to its small training data. Then,
the number of filters in our approach is set to 100.

In terms of filter length, depicted in Fig. 5 (b) and (d), longer
filter lengths do not signify better performance. For example,
both F-measure and accuracy of the datasets hdfs and spark
display a steady changes over different filter lengths. However,
longer filter lengths can obviously enhance the performance
on other two datasets. When setting the filter length larger
than five, duplicate bug reports from mapreduce and hadoop
can be well identified. Thus, we achieve that longer filter
lengths are more helpful for small datasets (e.g., fewer than
500 bug reports). For large-scale datasets, adjustment of filter
lengths may not distinctly improve the performance. So, in our
experiments, we set the values of filter length as 3, 4, 5 for
hadoop dataset and 4, 5, 6 for other three datasets respectively.

4) Performance with Different Word Embeddings: To fur-
ther validate the extensibility and flexibility of our approach,
we continue to compare the performance of our DBR-CNN
approach with traditional CNN by using different word em-
beddings. Three word embeddings are employed in this section
which include

• Randomly-generated embeddings: Each word embedding
is a random uniform distribution in the range [-0.5, 0.5)
and divided by the length of the embedding layer.

• Glove [25]: The word embeddings are trained based
on aggregated global word-word co-occurrence statistics
from a corpus, provided by Stanford University.

• Word2vec: The word embeddings are fine-tuned based on
the subject datasets during the training process, instead of
using existing word embeddings. Specifically, we employ
the skip-gram neural network architecture to perform pre-
training, which is available in the word2vec tool [18].
And four bug report datasets are employed to train word
embeddings, including hadoop, hdfs, mapreduce, and
spark from Jira.

Fig. 6 and Fig. 7 show the F-measure and accuracy of
DBR-CNN approach and traditional CNN approach with
three word embeddings respectively. specially, This two fig-
ures demonstrate that our DBR-CNN approach outperforms
traditional CNN approach both in F-measure and accuracy
with hadoop, hdfs, spark, mapreduce datasets under Random,
Glove, Word2vec word embeddings separately. This observa-
tion shows that our approach is effective in enhancing the
detection performance. What’s more, Table VI lists the values
of F-measure and accuracy in detail. From the Table VI, we
can see that Glove and self-trained word2vec can outperform
randomly-generated word embeddings in most cases. This
indicates that the performance of our model can be improved
by modifying specific components. Furthermore, Table VI also
shows that DBR-CNN approach can enhance the detection



performance remarkably. our proposed approach can improve
the F-measure by 18%, 17%, and 12% with random, Glove,
and word2vec respectively, and also can enhance the accuracy
by 15%, 14%, and 10% severally. It demonstrates that our
proposed approach not only can improve the detection perfor-
mance but also has the extensible and flexible characteristics.

V. LIMITATIONS AND DISCUSSION

External Validity: First, our approach is evaluated on four
datasets, which may not guarantee the generalization of the
proposed approach. We alleviate this threat by using datasets
from different platforms. Second, the number of bug reports
for training the neural network model may not be sufficient.
However, experimental results show that our proposed model
can outperform all the baselines, even with few datasets. We
will continuously collect more subject bug reports, and release
our datasets for publicly available in future.

Internal Validity: One of the major contributions of our
work is that we combine domain-specific features into du-
plicate bug report detection. There maybe different ways to
combine the domain-specific features, and we only discuss
one combination style. However, our integration of features
into the neural network model after max-pooling layer has
been validated to be more effective than baseline methods.
Other integration styles will be discussed comprehensively in
our future work.

VI. RELATED WORK

Our proposed approach is inspired by the research on
duplicate bug detection.

Many previous studies have focused on detecting duplicate
bug reports [2], [4]–[7], [13], [26]. Per Runeson et al. develop
a tool aiming to employ the NLP techniques to help automate
detection of defect reports. This paper presents the processing
steps of defect reports by using NLP in detail- tokenization,
stemming, and stop words removal. And the experimental
results show that about 40% of the marked duplicates could be
found [2]. Wang et al. employ not only the word frequency but
also the inverse document frequency. In addition, the execution
information is also added in detecting process [4]. Jalbert
et al. propose a novel system which automatically classifies
duplicate bug reports as they arrive to save developer time.
This system employs surface features, textual semantics, and
graph clustering to detect duplicate bugs. Furthermore, they
evaluate their approach by employing a dataset of 29,000 bug
reports for Mozilla project, and the experimental results denote
that their system is able to reduce development cost by filtering
out 8% of duplicate bug reports [5]. Sun et al. present several
approaches to address the duplicate bug reports [6], [7], [13],
[26]. In [6], the discriminative models for information retrieval
is leveraged to detect duplicate bug reports. In particular,
Sun et al. improve the accuracy by extending the BM25F-
which is an effective similarity formula in information retrieval
community. And they also propose a new retrieval function
REP for specific bug repositories. Yang et al. propose a novel
approach which combines a traditional IR technique and a

word embedding technique [27]. In addition, these factors also
are taken in consideration that include bug titles, descriptions,
bug product and component They calculate three similarity
scores according to TF-IDF, word embedding vector, and bug
product & component respectively. And then, the combined
score of these three similarity scores is used to similar bug
recommendation.

However, the performance of duplicate detection process
should be enhanced. Different from above approaches, we
leverage deep leaning technique to automate the detection
process of duplicate bug reports, in which both syntactic and
semantic features are extracted without manually choosing and
searching of key words.

Hindle et al. provide empirical evidence supportive of code
can be usefully modeled by statistical language models and
such models can be leveraged to support software engineers by
using n-gram model [28]. Recently, more attentions have been
paid to deep learning techniques in duplicate questions [11],
[12], [14]. Bogdanova et al. employ CNN to generate dis-
tributed vector representations for pairs of questions with a
similarity metric [14]. The experimental results show that
CNN with in-domain word embeddings achieves high perfor-
mance. Homma et al. leverage a Siamese Gated Recurrent
Unit (GRU) NN to encode each sentence to detecting du-
plicate questions [11]. What’s more, they demonstrate data
augmentation can be employed to enhance the performance
of Siamese NN model. Addair explores three types of deep
learning technologies for detecting duplicate question pairs,
such as CNNs, long short-term memory networks and a hybrid
model [12].

Different from these approaches, our approach employs
deep leaning to produce CNN-based features of bug reports,
and concatenates the CNN-based features and domain-specific
features to further enhance the performance.

Budhiraja et al. propose an approach named Deep Word Em-
bedding Network (DWEN) to compute bug report similarity by
using the notion of word embeddings [29]. They employ the
Mozilla Projects and Open Office Projects duplicate bug report
datasets and compare IR-based method and Latent Dirichlet
Allocation (LDA) approaches, and the experimental results
show that the DWEN approach is able to perform better than
IR-based approach and LDA approach. In addition, Budhiraja
et al. combine LDA and word embeddings to take advantage
of both for duplicate bug report detection [30]. They first use
LDA model to calculate the similarity for a new bug report
with all the existing bug reports, and top-n bug reports can
be obtained. After that, top-K closest bug reports are shown
to the Triager by using a word embedding model. their study
on a real world dataset of Firefox project show that there is
potential in combining both LDA and word embeddings for
duplicate bug report detection.

Our DBR-CNN approach differs from the above approaches,
in which we improve traditional CNN model in combination
with some domain-specific features extracted from bug reports.
Furthermore, experimental analysis on bug reports from four
different popular open-source projects demonstrates the appli-



cation generalization of our approach.

VII. CONCLUSION

In this paper, we construct a CNN-based framework to
automate the detection process of duplicate bug reports, which
aims to exploit the DL in automated detecting to improve
the detection performance. By employing DL technology and
combining the domain-specific features, our approach takes
advantage of both syntactic and semantic information that
benefits the automated detecting of duplicate bug reports.
Moreover, the experimental results on four different bug report
datasets confirm that our approach improves the detection
performance remarkably and our approach is extensible and
flexible by combing multiple domain-specific features in dif-
ferent bug reports platforms.

To further enhance the performance, in the future, we will
continue to optimize the CNN-based framework and enrich
the experiments. Furthermore, more bug report datasets will
be collected to exploit the new features by employing DL
technologies.
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