
PAID: Prioritizing App Issues for Developers by
Tracking User Reviews Over Versions

Cuiyun Gao∗†, Baoxiang Wang†, Pinjia He†, Jieming Zhu†, Yangfan Zhou∗‡, and Michael R. Lyu∗†
∗Shenzhen Research Institute, The Chinese University of Hong Kong, China

†Dept. of Computer Science and Engineering, The Chinese University of Hong Kong, China
‡School of Computer Science, Fudan University, Shanghai, China
{cygao, bxwang, pjhe, jmzhu, yfzhou, lyu}@cse.cuhk.edu.hk

Abstract—User review analysis is critical to the bug-fixing and
version-modification process for app developers. Many research
efforts have been put to user review mining in discovering app
issues, including laggy user interface, high memory overhead,
privacy leakage, etc. Existing exploration of app reviews generally
depends on static collections. As a result, they largely ignore
the fact that user reviews are tightly related to app versions.
Furthermore, the previous approaches require a developer to
spend much time on filtering out trivial comments and digesting
the informative textual data. This would be labor-intensive
especially to popular apps with tremendous reviews.

In the paper, we target at designing a framework in Prior-
itizing App Issues for Developers (PAID) with minimal manual
power and good accuracy. The PAID design is based on the fact
that the issues presented in the level of phrase, i.e., a couple of
consecutive words, can be more easily understood by developers
than in long sentences. Hence, we aim at recommending phrase-
level issues of an app to its developers by tracking reviews over
the release versions of the app. To assist developers in better
comprehending the app issues, PAID employs ThemeRiver to
visualize the analytical results to developers. Finally, PAID also
allows the developers to check the most related reviews, when
they want to obtain a deep insight of a certain issue. In contrast
to the traditional evaluation methods such as manual labeling or
examining the discussion forum, our experimental study exploits
the first-hand information from developers, i.e., app changelogs,
to measure the performance of PAID. We analyze millions of user
reviews from 18 apps with 117 app versions and the results show
that the prioritized issues generated by PAID match the official
changelogs with high precision.

I. INTRODUCTION

Different from traditional software resources such as codes
and documents, user reviews on mobile apps are resources
of comments directly from customers and can be exploited
by developers during the bug-fixing process. Some previous
studies on app reviews have been conducted, such as retrieving
app features [21], analyzing user sentiments [14], and compre-
hending user requirements [29], etc. Most of the work adopts
traditional review mining methods, e.g., topic modeling [12]
or linguistic rules [32], to analyze user comments.

However, the app reviews are greatly distinct from these
conventional ones. Different from the classic online reviews
like hotel reviews [30] and commodity reviews [20], app
reviews have three major characteristics: 1) They are shorter
in length because most of them are posted from mobile
terminals; 2) They contain massive non-informative reviews

that cannot provide insights to improve the apps (such as
“good app”, “sucks”, and “stupid you NEED to use this”, etc.),
and practically only 35.1% reviews are “informative” [13];
3) They are time-sensitive, that is, the significant comments
are varying with time. For example, according to the official
announcement of WhatsApp, it commits a new version every
3.77 days on average from Nov. 2014 to Jan. 2015 (Fig. 1). The
ratings fluctuate with the version updates, indicating that app
versions indeed affect the user feedback. There exists some
work concentrating on the first two features, but very few
studies focus on analyzing the changes of main topics over
versions. As far as we know, the only one investigation on
this topic is [7]; however, the work focuses on all the apps
of Blackberry app store to discover the migration of general
app properties (e.g., “Games” shows a tendency to “Sports &
Recreation”, “Finance” grows close to “Business”). Other than
analyzing the trends of app features of the whole app store,
in this paper, we aim at identifying crucial app issues for a
specific app, so as to help app developers in bug fixing and
feature enhancement.

Fig. 1: The Official Changelog of WhatsApp Messenger on
Android [2]. The letters indicate main version releases.

Furthermore, the existing exploration consumes a large
amount of time on filtering meaningless reviews or interpreting
the topics generated by topic modeling manually. This would
be quite labor-intensive, especially when we need to handle
excessive comments. Despite existing work [13], [15] on
automatically extracting user concerns, we pay attention to
different aspects. On one hand, current work still demands
great human efforts in labeling non-informative reviews, while
in our paper, we involve almost no labor power. On the
other hand, previous studies do not consider the timeliness
of reviews. In contrast, this is one major focus of this work.

In this paper, we propose a novel framework PAID for
prioritizing app issues by tracking user comments over release
versions. Our goal is to facilitate the process of analyzing
reviews for developers while achieving good performance.

We assume that the issues represented in phrase can cost the
developers less time than in sentence to recognize the urgent
ones. Therefore, we propose to provide app issues in phrase
instead of in sentence [13], [15] for viewers. Here, the “phrase”
indicates 2-gram terms (i.e., two consecutive words) especially.
Figure 2 illustrates an example of the assumption. Intuitively,
with key phrases (highlighted in dash rectangles) presented,
the developers can learn the main aspects of complaints from
users quickly.

Fig. 2: An Instance of User Reviews with Useful Phrases in
Dash Rectangles.

Similar to “Bag-of-Phrases”, we define a Phrase Bank, a
dictionary containing all the meaningful phrases in the user
reviews. The Phrase Bank is established for the subsequent
issue-prioritizing step. To exclude the non-informative reviews,
we manually label 60 stop words, including common emotional
words (such as, “like”, “amazing”, “cool”, etc.) and mean-
ingless description words (such as, “facebook”, “star”, “app”,
etc.). This labeling process just takes a couple of minutes,
and the generated list of non-informative words can also be
applied to the analysis of other apps. To make the prioritized
issues more diverse, we adopt topic modeling to group review
topics. Each topic is then interpreted by one closest phrase
automatically. The produced phrases are the app issues we
want to present to developers. For better understanding the
textual outputs, we ultimately visualize the results with The-
meRiver [19].

During the evaluation part, we crawl 2,089,737 reviews
of 37 apps. Eighteen apps with detailed changelogs (117
versions in total) are employed to test the effectiveness of our
framework. We measure the similarities between our results
and the official changelogs and find that our method can
achieve good precision.

To sum up, we try to answer the following questions.

a) What is the trend of main topics reflected by users along
with different app versions? (in V-A)

b) Will the developers modify the most urgent issues
generated by our method firstly? (in V-B and V-C)

In general, PAID has several unique features: 1) It con-
centrates on discovering the critical issues from user reviews
just for one specific app, aiming at its reliability aspect;
2) It recommends key phrases instead of long reviews as
urgent quality issues to developers; 3) Almost no manpower is
involved during the noise-filtering (for weeding out meaning-
less comments) and topic-extraction process; 4) It tracks user
reviews over different app versions rather than based on the
whole collection, thus achieving better personalization; 5) The

Fig. 3: Two Review Instances of Viber Which Indicate Two
Different Issues of the App.

ultimate app quality issues are well visualized to facilitate the
developers’ understanding.

The main contributions of this work are summarized as
follows:

• We design a novel framework PAID to prioritize phrase-
level issues systematically and automatically.

• We propose a new evaluation metric to measure the
prioritization of app issues by employing the official app
changelogs.

• We implement experiments on a large real dataset to
demonstrate the accuracy and effectiveness of our frame-
work.

The remainder of the paper is organized as follows. Sec-
tion II illustrates the importance of user reviews for app
modification by an instance. Section III outlines the overall
picture and Section IV explains the issue-prioritizing model of
our work. Section V presents our technique dealing with the
real app reviews and evaluates our method based on changel-
ogs. Section VI discusses possible limitations. Section VII
introduces related work. Finally, Section VIII concludes the
paper.

II. A MOTIVATING EXAMPLE

To address the motivation of the work, we give an example
in which the updated app version indeed fixes the issues
reflected in user reviews.

We choose Viber (a tool app) for illustration. Viber just
updated its version on June 3, 2015 in the Google Play
Store. Glancing over its user reviews posted a few days
before June 3, we find some comments demanding the same
aspects. Figure 3 illustrates a couple of reviews of Viber. In
the instances, the users complains the problem of too much
internal storage occupied, and the second one describes the
existence of “intruder selfie”.

By checking the changelog (shown in Fig. 4) of the latest
version of Viber, we discover that it covers these two problems
with “save space” in the first log and “anti-intruder feature”
in the second. It can be seen that user review analysis is a
significant part during the app development, and a tool like

Fig. 4: The Official Changelog of the Latest Version of Viber.

PAID can be greatly helpful to app developers, to improve
software quality and reliability.

III. FRAMEWORK OF PAID

The overall framework of PAID is shown in Fig. 5, includ-
ing three procedures (Data Extraction, App Issue Generation,
as well as Visualization and Issue Analysis).

Fig. 5: The Framework of PAID

Data extraction serves to provide a formatted input to the
topic grouping process. During the extraction (Section IV-A),
we preprocess the raw data crawled from the website and then
conduct a filtering process to weed out the noise data or non-
informative reviews. Afterwards, we import the filtered data
into the issue-generation segment (Section IV-B). App issues
are represented in phrase level for developers’ convenience.
Based on the construction of Phrase Bank and topic groups,
we rank phrases and display them to developers through visu-
alization (Section IV-C). For the developers who want to gain
an in-depth understanding of the issues, we also recommend
important user reviews corresponding to these issues.

IV. DESIGN AND IMPLEMENTATION

In this section, we describe the design of PAID, including
data extraction, app issue generation, as well as visualization
and issue analysis.

TABLE I: A Snapshot of the Database

No. Author Review Title Date Star Version

1 Marvin
Not working in
Lenovo A606
plus. Fix it.

Help. 2015-05-
26T11:00:42 1 5.4.0.3239

2 Sibiya I love it.
Best
app
ever.

2015-05-
26T10:52:19 5 5.4.0.3239

3 Moham Nice apps. Khalil 2015-05-
26T10:52:33 3 5.4.0.65524

4 Hassan Superrrrrrr. Alcshita 2015-05-
26T10:41:01 5 5.4.0.45564

5 Andrew Would’s worst
app.

Can’t
sing till

2015-05-
26T10:34:56 1 5.4.0.3239

A. Data Extraction

Data extraction serves to format the raw data and remove
the useless information for the subsequent analysis. It includes
data crawling, data preprocessing, and filtering.

1) Data Crawling: PAID employs a specific crawling API
(provided by AppFigures [3]). It provides access to app reposi-
tories, such as reviews, products, ratings, and ranks, etc., along
with a variety of querying filters. It takes us a few weeks
to collect the review resources. Table I presents a snapshot
of the dataset. The dataset contains seven attributes for each
item and we use five of them in the paper: No., Review, Date,
Star, and Version. The words highlighted are considered non-
informative in our framework. In our experiments, we have
cralwed 2,089,737 user reviews of 37 apps during a period of
10 months (see details in Table VI).

2) Preprocessing: The preprocessing part and filtering part
prepare the dataset for the subsequent topic grouping process.
As we can observe from Table I, the reviews contain casual
(e.g., “superrrrrrr”) and non-informative words (e.g., “nice”,
“love”, and “worst”). Firstly, we take the lowercase of all the
words in the dataset. To remove those casual words, we use
the typical actual wordset - Synsets [9] as the first filter. Then
we guarantee that the remaining words exclude the stop words
in the NLTK [8] corpus.

Next we reduce the words to the root form by lemmatiza-
tion [6]. The reason why we do not choose stemming [10] is
that stemming crudely chops off the ends of words, which
is not suitable for reviews with large numbers of casual
words. Meanwhile, lemmatization can preserve the informative
derivational ends with the inflectional ends removed. Table II
illustrates this fact (e.g., “occasions” is reduced to “occas” in
Stemmer and to “occasion” in Lemmatizer). With respect to
weeding out the non-informative reviews, we will discuss in
detail in Section IV-A3.

TABLE II: Comparison between Stemmer and Lemmatizer

Original Word Stemmer Lemmatizer
another anoth another

attentions attent attention
available avail available

compatible compat compatible
concentrations concentr concentration

occasions occas occasion
notifications notif notification

solutions solut solution

Our goal is to track the user reviews over versions; there-

fore, we need to divide user reviews into different app versions.
As some versions possess insufficient reviews for analysis,
we combine the consecutive ones to form a larger review
collection.

3) Filtering: The filtering part targets at removing non-
informative reviews (e.g., “Nice apps”, “I love it”, etc., as
shown in Table I).

In our framework, we simply remove 60 meaningless words
that frequently appear in the non-informative reviews, such as
emotional words (e.g., “annoying” and “awesome”), everyday
words (e.g., “good” and “much”), etc. We call these words
Filter Bank. Our prior work [4] shows the effectiveness of this
approach. The Filter Bank used in the framework is listed in
Table III. The words in the bank are manually identified. Since
the number is rather small, it just takes us a couple of minutes
to label them. In contrast, it takes about half an hour for the
approach proposed in [13]. The output is fed into the topic
grouping process.

TABLE III: Filter Bank to Filtering Non-Informative Reviews

app, good, excellent, awesome, please, they, very, too, like, love, nice, yeah,
amazing, lovely, perfect, much, bad, best, yup, suck, super, thank, great, really,
omg, gud, yes, cool, fine, hello, god, alright, poor, plz, pls, google, facebook,
three, ones, one, two, five, four, old, new, asap, version, times, update, star, first,
rid, bit, annoying, beautiful, dear, master, evernote, per, line.

B. App Issue Generation

App issue generation aims at recommending the most
important app issues to the developers. We employ a rule-
based method to produce the Phrase Bank. The app issues are
prioritized by combining the results of phrase generation and
topic grouping.

1) Phrase Generation: The foundation of prioritizing
phrase-level app issues is to build a Phrase Bank (i.e., a phrase
collection). Since the preprocessed review texts have been
lemmatized and filtered, the meaning of the phrases generated
from these texts may be confusing (e.g., “applic unstabl”,
“get unlik”, etc.). Hence we extract the phrases (specifically
referring to 2-gram terms) from the raw user reviews directly
instead of the preprocessed reviews by a rule-based method.
Four rules are adopted during this process. In the first step,
we use TMI (True Mutual Information) [28] to rank the 2-
gram phrases. TMI is defined as the weighted average of the
pointwise mutual information for all the observed and expected
value pairs, indicating the co-occurrence rate of the words in
each pair. Intuitively, a meaningful phrase should frequently
occur in the collection, in which the words tend to be highly
correlated to each other. The TMI between two words w1 and
w2 is defined as

TMI(w1, w2) =
Pr(w1, w2)

Pr(w1)Pr(w2)
, (1)

where Pr(w1, w2) and Pr(w) denote the probability of phrase
w1w2 and ungram w respectively, and are estimated by their
frequencies in the review collections.

Rule 1 (Length Limit). The length of each word in the phrase
must be no less than three.

Rule 2 (Informative Assurance). Each word in the phrase
should not appear on the stop-word list of NLTK or in the
Filter Bank.

Rule 3 (Part of Speech Limit). Each word in the phrase should
not be an adverb or a determiner.

Rule 4 (Quality Assurance). We set a threshold to the proba-
bility of Pr(w1, w2). The co-occurrence frequency of w1 and
w2 must exceed five times. Furthermore, we only consider the
top 150 phrases based on TMI score. These are to ensure the
quality of the phrases in the Phrase Bank.

Based on the above rules, we obtain the Phrase Bank, from
which we will recommend important ones to the developers.

2) Topic Grouping: We prioritize phrases in the Phrase
Bank to the developers by a grouping-based ranking strategy.
First, we adopt a topic modeling method to summarize the
words into different topics. Then for each group, we pick a
phrase to represent the topic, which can be regarded as an
interpretation process (Section IV-B3).

To capture the timeliness of user reviews, we use dLDA
(Dynamic Latent Dirichlet Allocation) [11] to discover the
latent topic sets for each version. In dLDA, the reviews in
the collection are categorized into discrete topics according
to their corresponding versions, and the topics evolve as time
goes by. A direct explanation of dLDA model is depicted in
Fig. 6, in which the number of app versions is m. For each
version, an LDA model [12] is established on the user reviews.
The connections between topics of different versions stem from
the assumptions of two Dirichlet distributions α and β. Thus
we can view the changes of users’ attention among versions.

Fig. 6: A Direct Explanation of dLDA Model.

Like LDA, the number of topics in dLDA also needs to be
defined in advance. Preprocessed user reviews in Section IV-A
are used as the input of topic modeling. For example, if we
set the magnitude of topics to be five, one sample output of
reviews on Facebook is shown in Table IV. We can observe the
transformation of latent topics across different app versions.
For example, the top word “video” in Topic 1 disappears
during the next few versions while the other words such as
“fix” and “close” gradually surface.

3) Issue Prioritizing: From the generated Phrase Bank,
we select the most suitable one for each topic of dLDA and
recommend these phrase-level issues to the developers.

The result of dLDA for a specific app version can be
displayed in Table V. Given the collection of user reviews
D = d1, d2, . . . , rn (n is the number of reviews), we denote
the corresponding vocabulary W = w1, w2, . . . , wg (g is the
magnitude of the vocabulary). After topic grouping, we have
the probability distribution Pr(w|β) for each word w over the

TABLE IV: One Sample Output of dLDA on Reviews of
Facebook

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Version 1

video use download post updat
fix phone messag see work

time need messeng feed new
play access take recent friend
close make space news slow

Version 2

video use messeng post updat
fix phone download feed work

time need messag news new
close access take see load
keep permiss space recent slow

Version 3

fix use messeng post updat
close phone download feed work
time need messag news load
keep access space see new
open make take recent slow

topics β. We design a topic-interpretation method from both
semantic aspect and sentiment aspect.

TABLE V: Review-Topic Matrix for a Specific App Version

β1 β2 · · · βk

w1 Pr(w1|β1) Pr(w1|β2) · · · Pr(w1|βk)
w2 Pr(w2|β1) Pr(w2|β2) · · · Pr(w2|βk)

...
...

...
. . .

...
wg Pr(wg|β1) Pr(wg|β2) · · · Pr(wg|βk)

Semantic Aspect: A good semantic phrase for the topic
should cover the whole topic as much as possible and dis-
criminate across topics simultaneously. Similar to Mei et al.’s
work [27], we use KL-Divergence to measure the similarity
Sim(β, l) between the topic β and the phrase candidate l.

Sim(β, l) = −KL(Pr(w|β)||Pr(w|l))

≈
∑
w

Pr(w|β)log(Pr(w, l|c)
Pr(w|C)Pr(l|C)

),
(2)

where Sim(β, l) is the similarity function, Pr(w|β) and
Pr(w|l) are the probability distributions over word w respec-
tively generated by β and l, and C indicates the whole review
collection. We use the occurrence frequency to calculate the
probability Pr(x|C) (x denotes l or w).

Pr(x|C) = {d ∈ C|x occurs in d}
{d ∈ C}

, (3)

where d represents one user review. The lower the KL-
Divergence is, the more the phrase is semantically similar to
the topic. Moreover, to make the phrases across topics to be
diverse, we add a term to punish those which have a higher
similarity score to multiple topics. Thus, the overall similarity
function is modified as

Sem(βi, l) = Sim(βi, l)−
µ

k − 1

∑
j 6=i

Sim(βj , l), (4)

where βi stands for the current topic to be scored, and µ is
used to adjust the penalty due to the similarity to other topics,
which is a parameter to be empirically set.

Sentiment Aspect: Intuitively, the developers prefer the
review with lower rating and longer length. Fig. 7 reflects
this fact. Obviously, the first review provides the developers
more information about the app bugs and features, such as
enabling the comment functionality and playing video in
higher resolution automatically.

Fig. 7: Two Review Instances Showing that Longer-Length and
Lower-Rating Reviews are Preferred by the Developers.

For the phrases l1, l2, . . . , lz (z denotes the number of
the phrase candidates) in the Phrase Bank, we define their
sentiment scores based on user ratings r and review lengths h.

Sen(l) = e
−r

ln(h) , (5)

where r and h of one phrase are defined as the average rating
and average length of all the reviews including the phrase,
respectively. The phrases contained in the reviews with longer
lengths and lower ratings will be scored higher.

Total Score: Combining the semantic aspect with the sen-
timent aspect by multiplication, the impacts of the both factors
on the final score are interrelated. We select the phrase l with
the highest score S(l) to represent the topic βi. The phrases
are the app issues we will recommend to the developers for
bug fixing or feature improving.

S(βi, l) = Sem(βi, l) ∗ Sen(l). (6)

C. Visualization and Issue Analysis

To help the developers better understand the changes of
major app issues over versions, we also involve visualization
in the end and provide the issue analysis.

1) Visualization: We adopt ThemeRiver [19] to represent
the transformation of app issues. The technique has been used
in handling large document collections [18], [22], but never
in the user reviews. The reason we use ThemeRiver is that
it provides users with a macro-view of issue changes in the
corpus over a serial dimension.

Figure 8 shows a sample ThemeRiver visualization on
Facebook. The “river” flows from left to right through versions,
changing its width to depict changes in the thematic impor-
tance of temporally associated reviews. The width is denoted
by the dash line in Fig. 8. Colored “current” flowing within the
river narrow or widen to indicate decreases or increases in the
importance of an individual issue or a group of issues in the
related reviews. Here, the importance of the issue is defined as
the occurrence frequency of the selected phrase for that issue
in the corresponding review collection.

Fig. 8: A Sample ThemeRiver Visualization on Facebook. The
colored “current” within the “river” indicates an individual is-
sue. The width of the “current” changing with versions denotes
the corresponding topic has different degrees of importance for
different versions. The issue is represented in phrase.

2) Issue Analysis: We also prioritize user reviews for the
developers in the case that they want to gain a deep insight
of the phrase-level issue. Similar to the sentiment score of the
phrase, the importance score I(d) of the review d is computed
based on its length h and user rating r as well. The number of
top reviews to be displayed is determined by the developers.

I(d) = e
−r

ln(h) . (7)

Finally, the reviews with longer lengths and lower ratings
will be ranked higher. The developers can comprehend more
about the app issues by checking the reviews in the toplist.

V. EMPIRICAL EVALUATION

For experiments, we have crawled more than two million
user reviews beginning from August 2014, and 37 apps belong-
ing to 10 categories. Each app receives roughly 56,479 reviews
on average. With multiple categories and massive reviews, we
can verify the effectiveness of our framework while mitigating
the data bias from only one type of reviews.

Specifically, we aim to answer the following questions: 1)
What is the trend of main topics reflected by app customers
along with different versions? (in V-A) 2) Have the developers
modified the issues prioritized by our framework? (in V-B and

TABLE VI: The Review Dataset of 35 Apps

Category App Name Review Quantity

Social
Facebook 176,362
Twitter 132,981
Instagram 130,855

Books & Reference Amazon Kindle 575
Wikipedia 541

Shopping eBay 91,368
Amazon Shopping 792

Photography

Photo Grid - Collage Maker 91,425
Camera360 Ultimate 79,640
PicsArt Photo Studio 569
Autodesk Pixlr - photo editor 500

Tools
Clean Master (Boost & AppLock) 234,342
Battery Doctor (Battery Saver) 116,534
CM Security Antivirus AppLock 87,785

Travel & Local

Booking.com Hotel Reservations 29,632
Google Earth 18,919
Expedia Hotels, Flights & Cars 1,367
Foursquare - Best City Guide 494

Communication

WhatsApp Messenger 130,761
Skype - free IM & video calls 103,479
Messenger 95,070
Viber 87,647
LINE: Free Calls & Messages 70,408
Chrome Browser - Google 54,707
Wechat 46,330
Hangouts 27,515
Gmail 21,138
CM Browser - Fast & Secure 500
Firefox Browser for Android 500
Contacts+ 499

Education Coursera 608
Duolingo: Learn Languages Free 487

Productivity
Evernote 48,525
SwiftKey Keyboard + Emoji 48,028
ES File Explorer File Manager 507

Music & Audio YouTude 86,395
Spotify Music 71,952

V-C). We also study the influences of parameter settings on
the performance of our method in V-D.

A. Case Demonstration

Here, we show the effectiveness of PAID on apps from
different categories: Viber (Communication), Evernote (Pro-
ductivity), Camera360 Ultimate (Photography), and Spotify
Music (Music & Audio). The numbers of user comments
belonging to various versions of these four apps are shown
in Fig. 9.

Fig. 9: The Distribution of User Reviews for Different Versions
of the Mobile Apps. We overlook the versions with less than
100 user reviews, and display the latest eight versions in the
collection.

The Phrase Bank is established based on the proposed
rules. Table VII illustrates the top 25 phrases from the Phrase
Bank of Viber.

TABLE VII: Phrase Bank (Top 25) of Viber

video call, video calls, activation code, samsung galaxy, call quality, phone
number, internet connection, free calls, video calling, profile picture, sound
quality, public chat, sony xperia, voice quality, online status, globus mobile,
asus zenfone, start earning, voice call

In the toplist, phrases “video call”, “video calls”, and
“video calling” are almost exactly the same. This is because
Viber is characterized by video calling, but developers may
not desire such repetitive information. Each prioritized phrase
must resemble one most relevant topic and distinguish from
the others. Based on dDAL and our issue-prioritizing method,
the phrases possessing the highest total scores are elected for
the topics. We present them with the corresponding scores
and along with versions in Table VIII. The phrases can cover
more kinds of app issues (e.g., the phrases for topics of
Viber 5.2.2.478 are “free calls”, “sony xperia”, “animated
stickers”, “chat background”, “activation code”, and so on.),
and the semantics of the phrases are consistent within one
topic (e.g., the phrases for topic 3 are “animated stickers” for
Viber 5.2.2.478, “download stickers” for Viber 5.3.0.2274, and
“download stickers” for Viber 5.3.0.2331). They are the issues
to be reported to the developers finally.

TABLE VIII: Phrases Prioritized for Viber Developers (k =
8, µ = 1)

Topics 5.2.2.478 5.3.0.2274 5.3.0.2331
Topic 1 free calls:0.67 free calls:0.66 free calls:0.65
Topic 2 sony xperia:0.97 sony xperia:0.93 sony xperia:0.91

Topic 3 animated
stickers:0.53

download
stickers:0.56

download
stickers:0.63

Topic 4 chat
background:0.69

incoming
messages:0.70

chat
background:0.73

Topic 5 activation code:3.66 activation code:3.69 activation code:3.72
Topic 6 galaxy tab:0.63 galaxy tab:0.62 samsung galaxy:0.61
Topic 7 voice call:1.95 call quality:1.94 call quality:1.94
Topic 8 start earning:1.42 start earning:1.44 start earning:1.45

However, it is extremely tedious to decide which bug
to fix by analyzing so many phrases and figures directly.
Therefore, we apply ThemeRiver to visualize the generated
results. Fig. 10 displays the ThemeRiver of Viber. The width
of the “current” represents the importance score of the issue
by counting the occurrence frequency of the corresponding
phrase. The issues are in random order within one version,
but their positions are consistent over versions. For example,
Fig. 10 demonstrates there is an increasing trend of the issue
“activation code”, colored in pure blue, for Viber 5.2.1.36,
5.2.2.478, and 5.3.0.2339.

To obtain an in-depth knowledge about one issue, such as
“activation code”, we provide the top reviews associated with
that issue based on the method in IV-C. Table IX lists the top
three reviews related to “activation code”. All these reviews
express some bugs of the app and illustrate different aspects
(e.g., “Messages are not present” in review 1, “a white popup
written only” in review 2, and “keeps on saying activation
code sent to your device” in review 3). Therefore, developers
can examine the urgent concerns from users by viewing issues

Fig. 10: The Themeriver of Viber. The horizontal axis denotes
app versions while the vertical axis means the start point of the
“river”. Each “current” represents a phrase-level issue. Wider
currents stand for more important issues.

first, then deciding and analyzing them deeply, and finally
scheduling the modification.

TABLE IX: The Top Three Reviews Related to “Activation
Code”

User Review Importance
Score

1

Upload viber! I went. Enter a phone number. I enter. Asks
for sure your phone? It will be sent an activation code. Ok.
Messages are not present. He writes to activate viber here,
install it to your phone first. But I have it pumped? What to
do? Help!

0.836

2

I hard reset my tab 3. Installed viber for activation code
when i write my phone number and press okay a white
popup written only. ERROR no description given and an
okay button on it please help me vibers my only way to
contact my son abroad.

0.834

3

I don’t know what’s wrong with Viber. Just downloaded it
nd it keeps on saying activation code sent to your device.
For almost a month, no any activation code and it’s really
pissing me off. Pls fix.

0.828

.

B. Performance Evaluation

To establish the connection between the analysis of user
reviews and decisions made by the developers, we employ the
changelogs of mobile apps. Changelog [5] is a record of all
the changes made to a software project, usually including such
records as bug fixes, new features, etc. It is a first-hand and
practical ground truth labeled by the developers directly.

We collect the official changlogs of six versions of
Viber from APK4Fun [1] for evaluation. The version of the
changelog we compare is the one immediately following the
experimental version. For example, to assess the result of
Viber 5.2.1.36, we need to inspect the changelog of the next
version, i.e., 5.2.2.478. Since our issues are in phrase level, we
manually summarize the changelogs into phrases (not limited
to 2-gram terms) as Table X. We remove the meaningless

phrases and sentences such as “bug fixes”, “General stability
and bug fixes to improve overall performance.”, etc. The
highlighted phrases comprise the ground truth of Viber.

TABLE X: The Changelogs of Viber and Its Identified Phrases

Versions Detailed Changelog & Identified Phrases

5.2.1.36

• Improved sticker menua;
• redesigned forward screen gives you the option to send to

groups, contacts;
• Public chats;
• General stability and bug fixes to improve overall

performance.b

5.2.2.478 • Bug fixes and updated emoticons.

5.3.0.2274

• Become an Admin and manage your group chats;
• Send and receive messages from your watch;
• Clearer contact info;
• Public Chat enhancements.

5.3.0.2331 Same as the previous version.
5.3.0.2339 Same as the previous version.

5.4.0.2519

• Enhancements for tablet users;
• Easier to activate Viber account on your tablet;
• Improved call and video screens;
• Send multiple photos more easily;
• Personalise your groups with your own icon;
• Customise Viber notifications in Priority Mode on Android L

only.

a The phrases highlighted constitute the ground truth.
b The phrases or sentences with line in the middle are discarded.

To measure the similarity between the prioritized issues L
and the ground truth U , we adopt the sentence-based seman-
tic similarity measure method in [24]. The method focuses
directly on computing the similarity between very short texts
of sentence length, which fits for our situation. We denote
the similarity degree between two phrases as s(u, l), where u
indicates the phrase in the ground truth, and l means the phrase
in the prioritized issues. For each phrase u in the ground truth,
we compute its similarity degrees to all the phrases in our
results, and the highest one is defined as the rate of the phrase
Rate(u).

argmax
u

Rate(u) = {s(u, l)|∀l : l ∈ L} (8)

The precision of our method is indicated by the average
rate of all the phrases in the ground truth. The pseudo-code is
illustrated as below.

Similarly, the precision of other three apps (Evernote,
Camera360 Ultimate, and Spotify Music) is also computed for
demonstration. Figure 11 depicts the results of these four apps,
with the average precision and standard deviations shown in
Table XI. All the four apps have precision larger than 55% and
two of them (Viber and Camera360 Ultimate) are larger than
70%. Three of the four apps produce the standard deviations
less than 0.045, while only the output of Camera360 Ultimate
is larger than 0.1. From the Fig. 11, we can observe that V2
of Camera360 reaches the lowest of its record. Checking the
corresponding changelog, we find it is just one sentence “New
HDR ‘Storm’ effect will blow your mind”, which is manually
identified as “HDR Storm effect” (a kind of technique used
in imaging and photography). Contrasting with our prioritized
issues (“selfie camera”, “tilt shift”, “stock camera”, “save

Algorithm 1: Precision-Computation(U , L)
Data: Prioritized issues L and the ground truth U
Result: Return the precision of our method.
Rate← 0;
while u in U do

s← 0;
while l in L do

t← s(u, l);
if t > s then

s← t;
else
end

end
Rate← (Rate+ s);

end
Rate← Rate/Num(U);

edited”, etc.), we consider the main reason for the result
is that the phrase in the changelog is brand-new and has
not been embodied in the semantic corpus. However, the
acceptable performance of other apps displays the effectiveness
of our method. Without the loss of generality, we provide
the evaluation of the available apps in our collection in the
following.

Fig. 11: The Precision of Our Method for Apps from Four Dif-
ferent Categories. The experimental parameters for similarity
measure settings are α = 0.002, β = 0.3, η = 0.6, φ = 0.8,
and δ = 0.9.

TABLE XI: Average Precision of Four Apps and Their Stan-
dard Deviations

Viber Evernote Camera360 Ultimate Spotify Music
Average Precision 0.703 0.585 0.775 0.560
Standard Deviation 0.042 0.045 0.109 0.041

C. Generality Evaluation

We employ the apps in Table VI to demonstrate the gen-
erality of PAID. Searching the changelogs online, we discover
that 19 of the 37 apps have no detailed information about
version modification. So we adopt the remaining 18 apps with
117 version changes for the verification. The result is shown in
Fig. 12. The average precision for these apps is 60.3%, which
is quite acceptable for app review analysis [13].

To analyze the correlation between the app category and
the framework performance, we compute the average precision

Fig. 12: The Precision of 18 Apps in the Collection. The
overall times of comparing is 117.

of the apps belonging to one category and the corresponding
average review number (Fig. 13). We discover that a larger
review quantity tends to produce a better result.

Fig. 13: The Relation between the Average Precision and
the Review Number Regarding to App Category. The review
numbers have been normalized by the maximum value in the
experimental dataset.

D. Parameter Study

In this section, we study the influence of parameter settings
(i.e., the number of topics k for each version and the penalty
factor µ in Section IV-B3) for our method. Figure 14 shows
that a larger number of topics can produce better precision.
This is because more topics introduce more issues, and hence
possess a higher probability to cover the changelog. Figure 15
indicates more penalty on the dissimilarity to other topics
can generate more promising precision and lower standard
deviation. Larger penalty makes the prioritized issues more
diverse. Therefore, more phrases in the changelogs can be
covered.

VI. LIMITATIONS AND DISCUSSION

This section discusses the validity and generalizability of
our findings.

As for the validity, our framework requires a large number
of user reviews. It restricts the size and quality of the Phrase
Bank and further influences the performance of prioritizing
issues. Moreover, since the width of “current” in ThemeRiver
is calculated by the occurrence of the corresponding issue in

Fig. 14: The Influence of k on Precision.

Fig. 15: The Influence of µ on Precision.

the collection, insufficient reviews cause a narrow current, even
if the issue is considerably crucial.

With respect to the generalizability, firstly, the category
of apps may affect the phrase-prioritizing process. For game
apps, since users tend to leave more significantly shorter and
non-informative reviews than the apps of other categories [34],
the generated Phrase Bank may contain few phrases. Hence,
the selected phrases to topics may not be very meaningful.
However, to reduce the interference, we can try to use the
low-rating reviews and introduce linguistic rules to extract
useful features. Secondly, for apps with only one version,
dLDA is not applicable, but we can use LDA alternatively
which possesses the same functionality as dLDA essentially.
Finally, we implement and testify our framework on reviews of
apps from Google Play. It is uncertain whether our framework
can achieve similar performance for apps in other store (e.g.,
App Store and Amazon Appstore). Future work will conduct
a large-scale empirical study to address this threat.

VII. RELATED WORK

Two lines of work inspire the design of PAID, namely
exploration on mobile app resources, and NLP (Natural Lan-
guage Processing) in app review analysis. The details are
discussed in the following.

A. Exploration on Mobile App Resources

Same as traditional software repositories such as codes
and documents [25], [35], user reviews on mobile apps are
also beneficial for software development. They are valuable
resources directly from customers and can be exploited by
developers during the bug-fixing process.

There has been an amount of research work on this topic.
In [16], the authors conduct a content analysis of online user
reviews to spot the factors that users find important in mobile
devices. They find four factors to be significantly related
with overall user evaluation, namely functionality, portability,

performance, and usability. Similarly, to understand user re-
quirements, Elisabeth [32] explores automated classification
of user reviews concerning the usage motives mentioned in
the reviews. There is “MARA” (Mobile App Review Ana-
lyzer) [21], a prototype for automatic retrieval of mobile app
feature requests from online reviews. Bin et al. [14] also probe
into identifying users’ major concerns and preferences from
user reviews. One of the differences between their work and
the previous work is that they further analyze the user issues
of different types of apps. However, the issues in the work are
manually defined. Continuously, with regard to automatically
analyzing user issues, Stuart et al. [26] contribute to labeling
the types of issues from the whole app store. Different from
these investigations, we focus on displaying user issues of
a specific app and aim at providing detailed user concerns
specifically for the developers, instead of general issue types.
Our work regards app review analysis as an indispensable link
during the app modification process for quality and reliability
purpose.

User sentiment analysis is also a popular research topic.
In [14], the authors propose “WisCom” to discover reasons
why users like or dislike an app, which is then utilized for
identifying inconsistencies in reviews. More detailedly, Emitza
and Wailid [17] present an automated approach to identify
fine-grained app features in the reviews, from which more
meaningful high-level features are extracted based on the user
sentiments. In our work, we also define the user sentiment to
detect the most helpful issues for the developers.

However, the existing studies mainly focus on static review
analysis and ignore the fact that user reviews change with
app versions. In [14], the authors try to analyze how the
number of comments varies with time and recognize the main
reasons for the spikes. Likewise, the study in [23] empirically
examines the growth pattern of rating and price in the app
store. Different from these tasks, we concentrate on analyzing
the topic changes instead of the intuitive variations. Although
there is one investigation [7] on the feature transformation in
the Blackberry app store, it targets at all the apps belonging to
one category and the features are more general. In the paper,
we devote to providing detailed suggestions to the developers;
therefore, our tool is app specific and the features are more
concretely related to software quality and reliability issues.

B. NLP in App Review Analysis

Rule-based methods, topic modeling, and supervised learn-
ing are widely used in review analysis. In [21], [32], part-of-
speech rules are utilized for limiting the contexts from which
feature requests can be extracted.

In [13], [14], [17], the topic modeling method LDA (Latent
Dirichlet Allocation) [12] is adopted. LDA is a probabilistic
distribution method which uses Gibbs sampling to assign
topics to user reviews. This indicates that each review can
be associated to different topics and that topics are related
to different words with a certain probability. Galvis and
Winbladh [15] explore the usage of LDA to summarize user
reviews, but their work focuses on semantic analysis while our
framework aims to recommend significant software issues to
developers.

In [13], a supervised learning method is used to filter
out the non-informative reviews, where the non-informative
reviews and informative reviews are labeled as the training set
first. The subsequent analysis only considers the informative
reviews. However, their work mainly considers from the per-
spective of users. Our work devotes to providing developers
with suggestions on arranging modification items by involving
app changelogs. That is, our focus is more on what developers
concern, particularly with respect to software quality.

Furthermore, the previous research on app review anal-
ysis involves little visualization, which would greatly assist
the developers in absorbing the knowledge mined from user
comments. The topic-based visualization has a rich history
due to the widespread application of topic modeling methods
so far. Text clouds [33] is widely used in the field of text
mining. The font size and color, the orientation of the text,
and the proximity of tags to one another can be applied to
convey some information to the observer. TextArc [31] is
an alternative view of text, tailored to expose the frequency
and distribution of the words of the entire text on a single
page or screen. However, these techniques are not applicable
for dynamic topic visualization. ThemeRiver [19] is such a
visualization system aimed at displaying thematic variations
among large collections of documents. In the paper, we employ
ThemeRiver to represent the textual information to developers.
Consequently, the developers can spot the most urgent issues
quickly and do not have to struggle with the burdensome texts.
This, to our best knowledge, is the first adaptation of the
visualization technique for mobile app developers.

VIII. CONCLUSION

This paper proposes a framework PAID to prioritize app
issues for the developers automatically and accurately. With
PAID, the developers can utilize a systematic process to
schedule the modification of the app, including which bugs
to fix or what features to add. Almost no manual labors are
consumed in the process. We adopt Filter Bank to exclude
non-informative words. The developers are supposed spend
less time on analyzing user reviews if the issues are in phrase
level, and hence PAID focuses on recommending phrase-level
issues to the developers. A Phrase Bank is establishes by the
rule-based method, and then combined with topic modeling to
generate the ultimate issues. Finally, ThemeRiver is employed
to enable the textual results more seamlessly presented to the
developers.

In future work, we will study what is the difference
between the decisions made by the developers and the concerns
made by users. Overall, our framework is rather generic and
extensible to incorporating more requirements.

ACKNOWLEDGMENT

This work was supported by the National Basic Research
Program of China (973 Project No. 2014CB347701), the Key
Project of National Natural Science Foundation of China
(Project No. 61332010), the Research Grants Council of Hong
Kong (Project No. CUHK 14205214), and Microsoft Research
Asia Grant in Big Data Research (Project No. FY13-RES-
SPONSOR-036). Yangfan Zhou is the corresponding author.

REFERENCES

[1] APK4Fun. http://www.apk4fun.com/.
[2] AppBrain. http://www.appbrain.com/.
[3] AppFigures. https://appfigures.com/getstarted.
[4] AR-Tracker: Track the Dynamics of Mobile Apps via User Review Min-

ing. https://cdn.rawgit.com/TIIC/AR-Tracker/master/AR-Tracker.html.
[5] Changelog on Wikipedia. http://en.wikipedia.org/wiki/Changelog.
[6] Lemmatization. http://en.wikipedia.org/wiki/Lemmatisation.
[7] Life and Death in the App Store: Theory and Analysis of Feature Mi-

gration. http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/RN 14
12.pdf.

[8] NLTK. http://www.nltk.org/.
[9] NLTK Wordnet Synsets. http://www.nltk.org/howto/wordnet.html.

[10] Stemming. http://en.wikipedia.org/wiki/Stemming.
[11] D. M. Blei and J. D. Lafferty. Dynamic topic models. In Proceedings of

the 23rd International Conference on Machine Learning (ICML), pages
113–120. ACM, 2006.

[12] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. The
Journal of Machine Learning Research, 3:993–1022, 2003.

[13] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang. Ar-miner: mining
informative reviews for developers from mobile app marketplace. In
Proceedings of the 36th Conference on Software Engineering (ICSE),
pages 767–778. IEEE, 2014.

[14] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh. Why
people hate your app: Making sense of user feedback in a mobile app
store. In Proceedings of the 19th SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages 1276–1284.
ACM, 2013.

[15] L. V. Galvis Carreño and K. Winbladh. Analysis of user comments:
an approach for software requirements evolution. In Proceedings of the
35th International Conference on Software Engineering (ICSE), pages
582–591. IEEE, 2013.

[16] J. Gebauer, Y. Tang, and C. Baimai. User requirements of mobile
technology: results from a content analysis of user reviews. Information
Systems and e-Business Management, 6(4):361–384, 2008.

[17] E. Guzman and W. Maalej. How do users like this feature? a fine
grained sentiment analysis of app reviews. In Proceedings of the 22nd
International Conference on Requirements Engineering (RE), pages
153–162. IEEE, 2014.

[18] Y. Hashimoto and R. Matsushita. Heat map scope technique for stacked
time-series data visualization. In Proceedings of the 16th Conference
on Information Visualisation (IV), pages 270–273. IEEE, 2012.

[19] S. Havre, E. Hetzler, P. Whitney, and L. Nowell. Themeriver: Visualiz-
ing thematic changes in large document collections. IEEE Transactions
on Visualization and Computer Graphics, 8(1):9–20, 2002.

[20] M. Hu and B. Liu. Mining and summarizing customer reviews.
In Proceedings of the 10th SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 168–177. ACM,
2004.

[21] C. Iacob and R. Harrison. Retrieving and analyzing mobile apps
feature requests from online reviews. In Proceedings of the 10th

Working Conference on Mining Software Repositories (MSR), pages
41–44. IEEE, 2013.

[22] D. Ip, K. L. Ka Keung, W. Cui, H. Qu, and H. Shen. A visual approach
to text corpora comparison. In Proceedings of the 1st International
Workshop on Intelligent Visual Interfaces for Text Analysis, pages 21–
24. ACM, 2010.

[23] J. Kim, C. Kim, Y. Park, and H. Lee. Trends and relationships of
smartphone application services: Analysis of apple app store using
text mining-based network analysis. In Proceedings of the 4th ISPIM
Innovation Symposium, 2012.

[24] Y. Li, D. McLean, Z. A. Bandar, J. D. O’shea, and K. Crockett.
Sentence similarity based on semantic nets and corpus statistics. IEEE
Transactions on Knowledge and Data Engineering, 18(8):1138–1150,
2006.

[25] H. Lu, E. Kocaguneli, and B. Cukic. Defect prediction between software
versions with active learning and dimensionality reduction. In Pro-
ceedings of the 25th International Symposium on Software Reliability
Engineering (ISSRE), pages 312–322. IEEE, 2014.

[26] S. McIlroy, N. Ali, H. Khalid, and A. E. Hassan. Analyzing and
automatically labelling the types of user issues that are raised in mobile
app reviews. Empirical Software Engineering, pages 1–40, 2015.

[27] Q. Mei, X. Shen, and C. Zhai. Automatic labeling of multinomial topic
models. In Proceedings of the 13th SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages 490–499.
ACM, 2007.

[28] R. C. Moore. On log-likelihood-ratios and the significance of rare
events. In Proceedings of the 2004 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 333–340. Association
for Computational Linguistics, 2004.

[29] J. Oh, D. Kim, U. Lee, J.-G. Lee, and J. Song. Facilitating developer-
user interactions with mobile app review digests. In Proceedings of
the 2013 CHI Extended Abstracts on Human Factors in Computing
Systems, pages 1809–1814. ACM, 2013.

[30] M. P. O’Mahony and B. Smyth. Learning to recommend helpful
hotel reviews. In Proceedings of the 3rd Conference on Recommender
Systems, pages 305–308. ACM, 2009.

[31] W. B. Paley. Textarc: Showing word frequency and distribution in
text. In Proceedings of Symposium on Information Visualization, volume
2002. IEEE, 2002.

[32] E. Platzer. Opportunities of automated motive-based user review
analysis in the context of mobile app acceptance. In Proceedings of
the CECIIS 2011, pages 309–316, 2011.

[33] A. A. Puretskiy, G. L. Shutt, and M. W. Berry. Survey of text
visualization techniques. Text Mining: Applications and Theory, pages
105–127, 2010.

[34] R. Vasa, L. Hoon, K. Mouzakis, and A. Noguchi. A preliminary analysis
of mobile app user reviews. In Proceedings of the 24th Australian
Computer-Human Interaction Conference (CHI), pages 241–244. ACM,
2012.

[35] K. S. Yim. Norming to performing: Failure analysis and deployment
automation of big data software developed by highly iterative models.
In Proceedings of the 25th International Symposium on Software

Reliability Engineering (ISSRE), pages 144–155. IEEE, 2014.

